Angle Trisection, Bhaskara’s Proof, and Pythagorean Theorem
DOI:
https://doi.org/10.32871/rmrj2109.01.01Keywords:
right angle, angle trisection, Bhaskara’s first proof, Pythagorean theoremAbstract
This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.
References
https://mathscholar.org/2018/09/simple -proofs-the -impossibility- oftrisection/#:~:
text=Gist%20of%20the%20proof%3A&text=Since%20the%20only%20
numbers%20and,60%2Ddegree%20angle%20is%20impossible
Bhat, R. (2019). Ram's theorem for trisection.
https://www.researchgate.net/publication/331034329_Ram's_theorem_for_Trisection
Bogomolny, A. (2016). Pythagorean theorem.
https://www.cut-the-knot.org/pythagoras/
Head, A. (n.d.). Pythagorean theorem. http://jwilson.coe.uga.edu/EMT668/EMT668.Student.Folders/HeadAngela/essay1/Pythagorean.HTML
Heilbron, J. L. (2001). Trisecting the angle: Archimedes' method.
In Britinnica Online Encyclopedia. Retrieved September 16, 2019, from
https://www.britannica.com/topic/Trisecting-the-Angle-Archimedes-Method-724632
Loomis, E. S. (1968). The pythagorean proposition.
The National Council of Teachers of Mathematics, Inc. (ED037335). ERIC.
https://files.eric.ed.gov/fulltext/ED037335.pdf
Yates, R. C. (1971). The trisection problem. National
Council of Teachers of Mathematics, Inc.(ED058058). ERIC.
https://files.eric.ed.gov/fulltext/ED058058.pdf
Zimba, J. (2009). On the possibility of trigonometric
proofs of the Pythagorean theorem. Forum Geometricorum, 9.
https://forumgeom.fau.edu/FG2009volume9/FG200925.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright of the Journal belongs to the University of San Jose-Recoletos