On Type 2 Degenerate Poly-Frobenius-Euler Polynomials

Authors

  • Roberto B. Corcino (1) Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City, Philippines; (2) Mathematics Department, Cebu Normal University, Cebu City, Philippines https://orcid.org/0000-0003-1681-1804
  • Cristina B. Corcino (1) Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City, Philippines; (2) Mathematics Department, Cebu Normal University, Cebu City, Philippines https://orcid.org/0000-0003-1634-9605
  • Waseem A. Khan Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Saudi Arabia https://orcid.org/0000-0002-4681-9885

DOI:

https://doi.org/10.32871/rmrj2513.01.02

Keywords:

polyexponential functions, type 2 poly-Frobenius-Euler polynomials, unipoly functions

Abstract

Background: This paper introduces a class of special polynomials called Type 2 degenerate poly-Frobenius-Euler polynomials, defined using the polyexponential function. Motivated by the expanding theory of degenerate versions of classical polynomials, the paper seeks to enrich the mathematical landscape by constructing generalized structures with deeper combinatorial and analytic properties.
Methods: The study employs the method of generating functions combined with Cauchy's rule for the product of two series to derive explicit formulas and identities, enabling systematic manipulation of series expansions. From an analytic perspective, the authors utilized the comparison test and principles of uniform convergence to establish that certain integral representations correspond to holomorphic functions.
Results: The researchers successfully derived explicit formulas and identities for the Type 2 degenerate poly-Frobenius-Euler polynomials. They established meaningful connections with the degenerate Stirling numbers of the first and second kinds. Furthermore, they introduced the Type 2 degenerate unipoly-poly-Frobenius-Euler polynomials, defined via the unipoly function, and thoroughly investigated their various properties, including behaviors under differentiation and integration.
Conclusion: The study significantly advances the theory of degenerate polynomials by constructing new polynomial families, derivation of explicit identities, and establishing analytic properties. It opens new avenues for future research by bridging classical and generalized combinatorial sequences within a robust analytic framework.

References

Alam, N., Khan, W. A., Kızılateş, C., Obeidat, S., Ryoo, C. S., & Diab, N. S. (2023). Some explicit properties of Frobenius–Euler–Genocchi polynomials with applications in computer modeling. Symmetry, 15(7), 1358–1358. https://doi.org/10.3390/sym15071358

Araci, S., & Acikgoz, M. (2012). A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Advanced Studies in Contemporary Mathematics, 22(3). Arxiv. https://doi.org/10.48550/arxiv.1205.6590

Carlitz, L. (1956). A degenerate Staudt-Clausen theorem, Arch. Math. (Basel), 7, 28-33.

Carlitz, L. (1979). Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math, 15, 51–88. https://combinatorialpress.com/um/vol15/

Eastham, M. S. P. (1964). On polylogarithms. Proceedings of the Glasgow Mathematical Association, 6(4), 169–171. https://doi.org/10.1017/s2040618500034961

Elizalde, S. L., & Patan, R. A. (2022). Deriving a formula in solving reverse Fibonacci means. Recoletos Multidisciplinary Research Journal, 10(2), 41–45. https://doi.org/10.32871/rmrj2210.02.03

Guan, H., Khan, W. A., & Kızılateş, C. (2023). On generalized bivariate (p,q)-Bernoulli–Fibonacci polynomials and generalized bivariate (p,q)-Bernoulli–Lucas polynomials. Symmetry, 15(4), 943–943. https://doi.org/10.3390/sym15040943

Janson, S. (2013). Euler-Frobenius numbers and rounding. Arxiv; Cornell University. https://arxiv.org/abs/1305.3512

Kaneko, M. (2025). Poly-Bernoulli numbers. Journal de Théorie Des Nombres de Bordeaux, 9(1), 221–228. http://www.numdam.org/item/JTNB_1997__9_1_221_0/

Khan, W. A. (2018). A new class of degenerate Frobenius-Euler-Hermite polynomials. Advanced Studies in Contemporary Mathematics, 28(4), 567–576.

Khan, W. A. (2023). Construction of the type 2 degenerate poly-Euler polynomials and numbers. Matematički Vesnik, 75(3), 147–156. https://doi.org/10.57016/MV-nr25PM82

Khan, W. A., Alatawi, M. S., & Duran, U. (2023). Applications and Properties for Bivariate Bell-Based Frobenius-Type Eulerian Polynomials. Journal of Function Spaces, 2023. https://doi.org/10.1155/2023/5205867

Khan, W. A., Duran, U., Younis, J., & Ryoo, C. S. (2023). On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling. Applied Mathematics in Science and Engineering, 32(1). https://doi.org/10.1080/27690911.2023.2297072

Khan, W. A., & Kamarujjama, M. (2023). A note on type 2 poly-Bernoulli polynomials of the second kind. Palestine Journal of Mathematics, 12(3), 74–84. http://pjm.ppu.edu/sites/default/files/papers/PJM_12%283%29_2023_74_to_84.pdf

Kim, D. S., & Kim, T. (2013). A note on higher-order Bernoulli polynomials. Journal of Inequalities and Applications, 2013. https://doi.org/10.1186/1029-242x-2013-111

Kim, D. S., & Kim, T. (2019). A note on polyexponential and unipoly functions. Russian Journal of Mathematical Physics, 26, 40–49. https://doi.org/10.1134/s1061920819010047

Kim, T. (2017). A note on degenerate stirling polynomials of the second kind. Proceedings of the Jangjeon Mathematical Society, 20(3). Arxiv. https://doi.org/10.48550/arxiv.1704.02290

Kim, T., & Kim, D. S. (2018). An identity of symmetry for the degenerate Frobenius-Euler polynomials. Mathematica Slovaca, 68(1), 239–243. https://doi.org/10.1515/ms-2017-0096

Kim, T., & Kim, D. S. (2020). Degenerate polyexponential functions and degenerate Bell polynomials. Journal of Mathematical Analysis and Applications, 487(2), 124017–124017. https://doi.org/10.1016/j.jmaa.2020.124017

Kim, T., Kim, D. S., Kim, H. Y., & Jang, L.-C. (2020). Degenerate poly-Bernoulli numbers and polynomials. Informatica, 31(3).

Kim, T., Kwon, H.-I., & Seo, J.-J. (2015). On the degenerate Frobenius-Euler polynomials. Global Journal of Pure and Applied Mathematics, 11(5). Arxiv. https://doi.org/10.48550/arXiv.1507.04846

Kurt, B. (2017). Poly-Frobenius-Euler polynomials. AIP Conference Proceesings, 1863(1). https://doi.org/10.1063/1.4992468

Kurt, B., & Simsek, Y. (2013). On the generalized Apostol-type Frobenius-Euler polynomials. Advances in Difference Equations, 2013(1). https://doi.org/10.1186/1687-1847-2013-1

Muhiuddin, G., Khan, W. A., & Al-Kadi, D. (2021). Construction on the degenerate Poly-Frobenius-Euler polynomials of complex variable. Journal of Function Spaces, 2021. https://doi.org/10.1155/2021/3115424

Muhiuddin, G., Khan, W. A., & Al-Kadi, D. (2022). Some identities of the degenerate poly-Cauchy and Unipoly Cauchy polynomials of the second kind. Computer Modeling in Engineering & Sciences, 132(3), 763–779. https://doi.org/10.32604/cmes.2022.017272

Muhiuddin, G., Khan, W. A., & Younis, J. (2021). Construction of Type 2 Poly-Changhee Polynomials and Its Applications. Journal of Mathematics, 2021. https://doi.org/10.1155/2021/7167633

Rao, Y., Khan, W. A., Araci, S., & Ryoo, C. S. (2023). Explicit properties of Apostol-Type Frobenius–Euler polynomials involving q-Trigonometric functions with applications in computer modeling. Mathematics, 11(10), 2386. https://doi.org/10.3390/math11102386

Zhang, C., Khan, W. A., & Kızılateş, C. (2023). On (p,q)–Fibonacci and (p,q)–Lucas polynomials associated with Changhee numbers and their properties. Symmetry, 15(4), 851–851. https://doi.org/10.3390/sym15040851

Downloads

Published

2025-04-29

How to Cite

Corcino, R. B., Corcino, C. B., & Khan, W. A. (2025). On Type 2 Degenerate Poly-Frobenius-Euler Polynomials. Recoletos Multidisciplinary Research Journal, 13(1), 13–31. https://doi.org/10.32871/rmrj2513.01.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.