Approximations of Apostol-Tangent Polynomials of Complex Order with Parameters a, b, and c
DOI:
https://doi.org/10.32871/rmrj2412.02.06Keywords:
Asymptotic approximation, tangent polynomials, Apostol-tangent polynomialsAbstract
This paper presents new approximation formulas for the tangent polynomials and Apostol-tangent polynomials of complex order, specifically for large values of n. These polynomials are parameterized by a,b, and c. The derivation of these formulas is accomplished through contour integration techniques, where the contour is carefully selected to avoid branch cuts introduced by the presence of multiple singularities within the integration path. The analysis includes a detailed computation of the singularities associated with the generating functions used in this process, ensuring the accuracy and rigor of the derived formulas. Additionally, the paper provides corollary results that reinforce and affirm the newly established formulas, offering a comprehensive understanding of the behavior of these polynomials under specified conditions.
References
Alam, N., Khan, W. A., Kızılateş, C., Obeidat, S., Ryoo, C. S., & Diab, N. S. (2023). Some explicit properties of Frobenius–Euler–Genocchi polynomials with applications in computer modeling. Symmetry, 15(7), 1358–1358. https://doi.org/10.3390/sym15071358
Bildirici, C., Acikgoz, M., & Araci, S. (2014). A note on analogues of tangent polynomials. Journal for Algebra and Number Theory Academica, 4(1), 21–29.
Churchill, R. V., Brown, J. W., & Verhey, R. F. (1976). Complex variables and applications (3rd ed.). McGraw Hill.
Corcino, C. B., Corcino, R. B., & Casquejo, J. (2023). Asymptotic expansions for large degree tangent and Apostol-tangent polynomials of complex order. Journal of Applied Mathematics, 2023(1). https://doi.org/10.1155/2023/9917885
Corcino, C. B., Damgo, A. A., Ann, J., & Corcino, R. B. (2022). Asymptotic approximation of the apostol-tangent polynomials using fourier series. Symmetry, 14(1). https://doi.org/10.3390/sym14010053
Corcino, C. B., & Corcino, R. B. (2022). Fourier Series for the Tangent Polynomials, Tangent–Bernoulli and Tangent–Genocchi Polynomials of Higher Order. Axioms, 11(3), 86. https://doi.org/10.3390/axioms11030086
Elizalde, S., & Patan, R. (2022). Deriving a formula in solving reverse Fibonacci means. Recoletos Multidisciplinary Research Journal, 10(2), 41–45. https://doi.org/10.32871/rmrj2210.02.03
Guan, H., Khan, W. A., & Kızılateş, C. (2023). On generalized bivariate (p,q)-Bernoulli–Fibonacci polynomials and generalized bivariate (p,q)-bernoulli–lucas polynomials. Symmetry, 15(4). https://doi.org/10.3390/sym15040943
López, J. L., & Temme, N. M. (2010). Large degree asymptotics of generalized bernoulli and euler polynomials. Journal of Mathematical Analysis and Applications, 363(1), 197–208. https://doi.org/10.1016/j.jmaa.2009.08.034
Rao, Y., Khan, W. A., Araci, S., & Ryoo, C. S. (2023). Explicit properties of Apostol-type Frobenius–Euler polynomials involving q-Trigonometric functions with applications in computer modeling. Mathematics, 11(10). https://doi.org/10.3390/math11102386
Ryoo, C. S. (2013a). A note on the symmetric properties for the tangent polynomials. International Journal of Mathematical Analysis, 7(52), 2575–2581. https://doi.org/10.12988/ijma.2013.38195
Ryoo, C. S. (2013b). On the twisted q-tangent numbers and polynomials. Applied Mathematical Sciences, 7(99), 4935–4941. https://doi.org/10.12988/ams.2013.37386
Yasmin, G., & Muhyi, A. (2021). A. certain results of 2-variable q-generalized tangent-Apostol type polynomials. Journal of Mathematics and Computer Science, 22(3), 238–251.
Zhang, C., Khan, W. A., & Kızılateş, C. (2023). On (p,q)–fibonacci and (p,q)–Lucas polynomials associated with Changhee numbers and their properties. Symmetry, 15(4), 851–851. https://doi.org/10.3390/sym15040851
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 University of San Jose-Recoletos
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of the Journal belongs to the University of San Jose-Recoletos