On Some Results of a Torsion-Free Abelian Kernel Group
DOI:
https://doi.org/10.32871/rmrj1402.02.11Keywords:
Kernel, kernel group, torsion-free abelian group, direct sum, pure fully invariantAbstract
References
[1] Arnold, David M. (1982). Lecture Notes in Mathematics. Springer – Verlag Berlin
Heidelberg, New York.
[2] Fuchs, Laszlo (1970). Infinite Abelian Groups. Academic Press Inc.. Vol. I.
[3] Fuchs, Laszlo (1973). Infinite Abelian Groups. Academic Press Inc.. Vol. II.
[4] Hungerford, Thomas W. (1974). Algebra. Springer – Verlag, New York.
[5] Krylov, P. A., Mikhalev, A. V., Tuganbaev, A. A. (2002). Properties of Endomorphism Rings
of Abelian Groups I. Journal of Math. Sci. Vol. 112 No. 6.
[6] Schultz, Phill (2004). Pure Invariance in Torsion-Free Abelian Groups. Proceedings of the
Auburn Algebra Conference. Oldsite. maths. uwa.edu.au / research / reports.
Heidelberg, New York.
[2] Fuchs, Laszlo (1970). Infinite Abelian Groups. Academic Press Inc.. Vol. I.
[3] Fuchs, Laszlo (1973). Infinite Abelian Groups. Academic Press Inc.. Vol. II.
[4] Hungerford, Thomas W. (1974). Algebra. Springer – Verlag, New York.
[5] Krylov, P. A., Mikhalev, A. V., Tuganbaev, A. A. (2002). Properties of Endomorphism Rings
of Abelian Groups I. Journal of Math. Sci. Vol. 112 No. 6.
[6] Schultz, Phill (2004). Pure Invariance in Torsion-Free Abelian Groups. Proceedings of the
Auburn Algebra Conference. Oldsite. maths. uwa.edu.au / research / reports.
Downloads
Published
2014-12-11
How to Cite
Villeta, R. B. (2014). On Some Results of a Torsion-Free Abelian Kernel Group. Recoletos Multidisciplinary Research Journal, 2(2). https://doi.org/10.32871/rmrj1402.02.11
Issue
Section
Articles
License
Copyright of the Journal belongs to the University of San Jose-Recoletos