Small-Scale Gold Mining and Heavy Metal Pollution: Assessment on the Physicochemical Parameters in the Surface Water Resources in Surigao City

Authors

DOI:

https://doi.org/10.32871/rmrj2412.01.11

Keywords:

artisanal gold mining, physicochemical, heavy metals, multivariate PCA

Abstract

The study aims to evaluate the physicochemical properties such as temperature, conductivity, resistivity, salinity, total dissolved solids (TDS), total suspended solids (TSS), and dissolved oxygen (DO), and the heavy metals concentration of Lead, Copper, Cadmium, Mercury, and Nickel along artisanal gold mining sites in the waterways in Surigao City. Through panning and amalgamation process, research has found out that among 54 barangays in Surigao City, Barangay Mat-I has gold deposits. Nineteen sampling stations with ten physicochemical parameters and five heavy metals were identified during wet and dry conditions. Results showed that pH, salinity, resistivity, TDS, TSS, DO, BOD, and COD exceeded the limit due to the presence of heavy metals like Hg, Pb, Ni, and Cd set by DENR Administrative Order (DAO) No. 34 standard and Philippine Clean Water Act of 2004 for surface water and statistical analysis using PCA multivariate.

References

Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Federico, C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18(6), 863–882. https://doi.org/10.1016/s0883-2927(02)00182-8

Akinbile, C. O., & Omoniyi, O. (2018). Quality assessment and classification of Ogbese river using water quality index (WQI) tool. Sustainable Water Resources Management, 4(4), 1023–1030. https://doi.org/10.1007/s40899-018-0226-8

Aliyu, A., Ibrahim, Y. K. E., & Oyi, R. A. (2018). Assessment of physicochemical and elemental quality of water from River Lavun, Bida, Niger State, Nigeria. Journal of Pharmacy & Bioresources, 15(2), 180–187. https://doi.org/10.4314/jpb.v15i2.12

Anithamary, I., Ramkumar, T., & Venkatramanan, S. (2012). Application of statistical analysis for the hydrogeochemistry of saline groundwater in Kodiakarai, Tamilnadu, India. Journal of Coastal Research, 28(1A), 89–98. https://doi.org/10.2112/jcoastres-d-09-00156.1

Banaszuk, P., Wysocka-Czubaszek, A., & Kamocki, A. K. (2011). Internal eutrophication of restored peatland stream: The role of bed sediments. Ecological Engineering, 37(2), 260-268. https://doi.org/10.1016/j.ecoleng.2010.11.016

Brindha, K., & Elango, L. (2011). Hydrochemical characteristics of groundwater for domestic and irrigation purposes in Madhuranthakam, Tamil Nadu, India. Earth Sciences Research Journal, 15(2), 101–108. https://www.researchgate.net/publication/216566256_Hydrochemical_characteristics_of_groundwater_for_domestic_and_irrigation_purposes_in_Madhuranthakam_Tamil_Nadu_India

Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3-4), 294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015

Department of Environment and Natural Resources (DENR, 1990). Revised Water Usage and Classification Water Quality Criteria Amending Section Nos: 68 and 69, Chapter III of the 1978 NPCC Rules and Regulations (Administrative Order No. 34, series of 1990). https://emb.gov.ph/wp-content/uploads/2016/04/DAO-1990-34.pdf

Dike, N. I., Ezealor, A. U., & Oniye, S. J. (2004). Concentration of Pb, Cu, Fe, and Cd during the dry season in river Jakau, Kano Nigeria. Chemclass Journal, 1, 78–81.

Einsiedl, F. (2012). Sea-water/groundwater interactions along a small catchment of the European Atlantic coast. Applied Geochemistry, 27(1), 73–80. https://doi.org/10.1016/j.apgeochem.2011.09.004

Garrels, R. M. (1976). A survey of low temperature water-mineral relations. In Interpretation of environmental isotope and hydrochemical data in groundwater hydrology (pp. 65–84). International Atomic Energy Agency (IAEA).

Glenn, E. P., Cohen, M. J., Morrison, J. I., Valdés-Casillas, C., & Fitzsimmons, K. (1999). Science and policy dilemmas in the management of agricultural waste waters: The case of the Salton Sea, CA, USA. Environmental Science & Policy, 2(4-5), 413–423. https://doi.org/10.1016/s1462-9011(99)00037-4

Glynn, P. D., & Plummer, L. N. (2005). Geochemistry and the understanding of ground-water systems. Hydrogeology Journal, 13(1), 263–287. https://doi.org/10.1007/s10040-004-0429-y

Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/s0043-1354(99)00225-0

Hussein, M. (2003). Hydrochemical evaluation of groundwater in the Blue Nile Basin, Estern Sudan, using conventional and multivariate techniques. Hydrogeology Journal, 12(2). https://doi.org/10.1007/s10040-003-0265-5

Iwar, R. T., Utsev, J. T., & Hassan, M. (2021). Assessment of heavy metal and physico-chemical pollution loadings of River Benue water at Makurdi using water quality index (WQI) and multivariate statistics. Applied Water Science, 11(7). https://doi.org/10.1007/s13201-021-01456-8

Jones, B. F., Vengosh, A., Rosenthal, E., & Yechieli, Y. (1999). Geochemical investigations. In J. Bear, A. H.-D. . Cheng, S. Sorek, D. Ouazar, & I. Herrera (Eds.), Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices. 51–71.

Kanfi, Y., Ronen, D., & Magaritz, M. (1983). Nitrate trends in the Coastal Plain aquifer of Israel. Journal of Hydrology, 66(1-4), 331–341. https://doi.org/10.1016/0022-1694(83)90194-4

Kar, I., & Patra, A. K. (2021). Tissue bioaccumulation and toxicopathological effects of cadmium and its dietary amelioration in poultry—a review. Biological Trace Element Research, 199(10), 3846–3868. https://doi.org/10.1007/s12011-020-02503-2

Mapatac, L. C. (2015). Potency of medicinal leaves in the growth performance of broiler chicks. Recoletos Multidisciplinary Research Journal, 3(1). https://doi.org/10.32871/rmrj1503.01.16

Nwineewii, J. D., Edori, O. S., & Onuchukwu, P. U. G. (2018). Concentration, ecological risk and enrichment factor assessment of selected heavy metals in sediments from new Calabar River, Nigeria. Journal of Applied Sciences and Environmental Management, 22(10), 1643. https://doi.org/10.4314/jasem.v22i10.20

Obodai, J., Duncan, A. E., Adjei, K. A., & Odai, S. N. (2023). A Preliminary Investigation of Surface and Groundwater Quality Along the Upper Part of the Ankobra River, Impacted by Illegal Mining Activities. Water, Air, & Soil Pollution, 234(3). https://doi.org/10.1007/s11270-023-06170-6

Pandey, S., & Kumari, N. (2023). Impact assessment of heavy metal pollution in surface water bodies. In S. K. Shukla, S. Kumar, S. Madhav, & P. K. Mishra (Eds.), Advances in Environmental Pollution Research (pp. 129–154). Elsevier. https://doi.org/10.1016/b978-0-323-95919-3.00004-5

Rao, P. (2007). Greening of the supply chain: An empirical study for SMES in the Philippine context. Journal of Asia Business Studies, 1(2), 55-66. https://doi.org/10.1108/15587890780001296

Samsudin, A. R., Haryono, A., Hamzah, U., & Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: A case study from north Kelantan, Malaysia. Environmental Geology, 55(8), 1737–1743. https://doi.org/10.1007/s00254-007-1124-9

Sanchez, J. M. P., Picardal, M. T., Libres, M. T., Pineda, H. A., Paloma, Ma. L. B., Librinca, J. M., Caturza, R. R. A., Ramayla, S. P., Armada, R. L., & Picardal, J. P. (2020). Characterization of a river at risk: the case of Sapangdaku River in Toledo City, Cebu, Philippines. AIMS Environmental Science, 7(6), 559–574. https://doi.org/10.3934/environsci.2020035

Sankar, R., Ramkumar, L., Rajkumar, M., Sun, J., & Ananthan, G. (2010). Seasonal variations in physico-chemical parameters and heavy metals in water and sediments of Uppanar estuary, Nagapattinam, India. Journal of Environmental Biology, 31(5), 681–686.

Shammas, M. I., & Jacks, G. (2007). Seawater intrusion in the Salalah plain aquifer, Oman. Environmental Geology, 53(3), 575–587. https://doi.org/10.1007/s00254-007-0673-2

Sreekanth, J., & Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 393(3-4), 245–256. https://doi.org/10.1016/j.jhydrol.2010.08.023

Thareja, S., Choudhury, S., & Trivedi, P. (2011). Assessment of water quality of Ganga River in Kanpur by using principal components analysis. Advances in Applied Science Research, 2(5), 84–91.

Vengosh, A., & Keren, R. (1996). Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. Journal of Contaminant Hydrology, 23(4), 347–360. https://doi.org/10.1016/0169-7722(96)00019-8

Venkatramanan, S., Ramkumar, T., & Anithamary, I. (2012). A statistical approach on hydrogeochemistry of groundwater in Muthupet Coastal Region, Tamilnadu, India. Carpathian Journal of Earth and Environmental Sciences, 7(1), 47–54.

World Health Organization. (1984). Fluorine and fluorides. https://iris.who.int/handle/10665/37288

Yidana, S. M., & Yidana, A. (2009). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59(7), 1461–1473. https://doi.org/10.1007/s12665-009-0132-3

Downloads

Published

2024-06-29

How to Cite

Mapatac, L., & Atega, T. (2024). Small-Scale Gold Mining and Heavy Metal Pollution: Assessment on the Physicochemical Parameters in the Surface Water Resources in Surigao City. Recoletos Multidisciplinary Research Journal, 12(1), 145–156. https://doi.org/10.32871/rmrj2412.01.11

Issue

Section

Articles