Robotic Rehabilitation Devices in the Philippines: A Review of Recent Advancements

Authors

DOI:

https://doi.org/10.32871/rmrj25si.t2406

Keywords:

rehabilitation robots, Philippines, advancements, prototypes, adaptation

Abstract

Background: Rehabilitation robots are emerging technologies that address common challenges in conventional rehabilitation methods, such as labor-intensive, costly, and often yielding slow or suboptimal recovery outcomes. These robots have been gaining popularity in the Philippines due to their cost-effectiveness and improved therapeutic efficiency. The country has gradually begun adapting technology, with rehabilitation robots introduced as assistive devices for clinical practice such as electromyogram (EMG)-assisted devices, Functional Electrical Stimulation (FES), Robotic Exoskeleton Hand, and Robot Exoskeleton for the Upper Limb. However, there is limited to no existing literature exploring robotic rehabilitation device advancements in the Philippines.
Methods: Thus, this review examined the prototypes developed and the progress made in developing rehabilitation devices from 2010 to the present in the country.
Results: Findings indicate that the Philippines is becoming more receptive to rehabilitation robotics, as evidenced by increasing recognition of its relevance and the procurement of foreign-developed technologies. Nevertheless, its progress is limited by investment, insufficient academic programs, and the absence of regulatory frameworks.
Conclusion: Increased government support for research, infrastructure, and protocols alongside university integration of relevant courses and interdisciplinary research are needed to foster its advancement.

References

Advincula, A. R. A., Masilang, J. M. B., Villablanca, J. M. F., & Sison, L. G. (2018, October 1). Cardiovascular Rehabilitation Equipment (CaRE). IEEE Xplore. https://doi.org/10.1109/TENCON.2018.8650074

Al-Ayyad, M., Owida, H. A., de Fazio, R., Al-Naami, B., & Visconti, P. (2023). Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics, 12(7), 1520–1520. https://doi.org/10.3390/electronics12071520

ASEAN Secretariat (2015). ASEAN Medical Device Directive. [PDF]. ASEAN Main Portal. https://asean.org/wp-content/uploads/2016/06/22.-September-2015-ASEAN-Medical-Device-Directive.pdf

Baniqued, P. D. E., Dungao, J. R., Manguerra, M. V., Baldovino, R. G., Abad, A. C., & Bugtai, N. T. (2018). Biomimetics in the design of a robotic exoskeleton for upper limb therapy. AIP Conference Proceedings, 1933, 040006. https://doi.org/10.1063/1.5023976

Bhardwaj, S., Khan, A. A., & Muzammil, M. (2021). Lower limb rehabilitation robotics: The current understanding and technology. WORK, 69(3), 775-793. https://doi.org/10.3233/WOR-205012

Borbajo, T.J., Casil, R.L., Cruz, J.V., Penaflor, T., & Musngi, M. (2017). Electromyography Controlled Functional Electrical Stimulation Data Acquisition System for Leg Rehabilitation [Paper presentation]. DLSU Research Congress 2017. https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2017/HCT/HCT-II-021.pdf

Cano-de-la-Cuerda, R., Blázquez-Fernández, A., Marcos-Antón, S., Sánchez-Herrera-Baeza, P., Fernández-González, P., Collado-Vázquez, S., Jiménez-Antona, C., & Laguarta-Val, S. (2024). Economic Cost of Rehabilitation with Robotic and Virtual Reality Systems in People with Neurological Disorders: A Systematic Review. Journal of Clinical Medicine, 13(6), 1531. https://doi.org/10.3390/jcm13061531

Carag, M., Garcia, A., Iniguez, K., Tan, M., and Santiago, A. (2015). Electromyogram-Assisted Upper Limb Rehabilitation Device [Paper presentation]. DLSU Research Congress 2015. https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2015/HCT/003-HCT_Santiago_AP.pdf

Carpino, G., Pezzola, A., Urbano, M., & Guglielmelli, E. (2018). Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art. Journal of Healthcare Engineering, 2018, 1–9. https://doi.org/10.1155/2018/7492024

De La Salle University Manila. (2021, December 13). IBEHT-RS-AGP-ACT3 - de la Salle University. De La Salle University. https://www.dlsu.edu.ph/research/research-centers/ibeht/robotic-rehabilitation-devices/ibeht-rs-agp-act3/

Galido, E., Esplanada, M. C., Estacion, C. J., Migrino, J. P., Rapisora, J., Salita, J., Amado, T., Jorda, R., & Tolentino, L. K. (2018). EMG Speed-Controlled Rehabilitation Treadmill with physiological data Acquisition System using BITAlino KIt. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1–5. https://doi.org/10.1109/hnicem.2018.8666272

Giansanti, D. (2020). The Rehabilitation and the Robotics: Are They Going Together Well? Healthcare, 9(1), 26. https://doi.org/10.3390/healthcare9010026

Iversen, M. D. (2012). Rehabilitation Interventions for Pain and Disability in Osteoarthritis. Orthopaedic Nursing, 31(2), 103–108. https://doi.org/10.1097/nor.0b013e31824fce07

Lee, S. H., Park, G., Cho, D. Y., Kim, H. Y., Lee, J.-Y., Kim, S., Park, S.-B., & Shin, J.-H. (2020). Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58630-2

Lo, K., Stephenson, M., & Lockwood, C. (2019). The economic cost of robotic rehabilitation for adult stroke patients: A systematic review. JBI Database of Systematic Reviews and Implementation Reports, 17(4), 520–547. https://doi.org/10.11124/jbisrir-2017-003896

Lungsod ng Maynila (2021). Inilunsad ng Ospital ng Maynila Medical Center ang Robotics Rehab program nito para sa mga pasyente na sumasailalim sa physical therapy [Image]. City of Manila. https://manila.gov.ph/tingnan-inilunsad-ng-ospital-ng-maynila-medical-center-ang-robotics-rehab-program-nito-para-sa-mga-pasyente-na-sumasailalim-sa-physical-therapy/?appgw_azwaf_jsc=SbJYuAIvoWxBqW9LlYzhfaPozlCvouHXB4WiLBvup64

Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review. Current Robotics Reports, 1(3), 131–144. https://doi.org/10.1007/s43154-020-00015-4

Munsayac, F. E., Culaba, A., Bugtai, N., Abuan, R. D., & Kaplan, A. (2023). Comprehensive Study of Industry 4.0 in Robotics for Policy Development. Recoletos Multidisciplinary Research Journal, 11(1), 55–69. https://doi.org/10.32871/rmrj2311.01.06

Olvido, M. M. (2020). Configuration of Research Culture: Investment, Process, and Norm. Recoletos Multidisciplinary Research Journal, 8(2), 1–13. https://doi.org/10.32871/rmrj2008.02.01

Ong, P. R., & Bugtai, N. T. (2018). A bio-inspired design of a hand robotic exoskeleton for rehabilitation. AIP Conference Proceedings, 1933, 040008. https://doi.org/10.1063/1.5023978

Philippine Council for Health Research and Development. (2024, November 8). AGAPAY : Robotic Exoskeleton for Upper Extremity Rehabilitation - Philippine Council for Health Research and Development. https://www.pchrd.dost.gov.ph/heartnovation/agapay-robotic-exoskeleton-for-upper-extremity-rehabilitation/

Saysay, R. S., Roxas, N. R., Bugtai, N. T., Co, H. S., & Baldovino, R. G. (2021). A 3-DOF Cable-Driven Robotic Ankle Rehabilitation Device. Lecture Notes in Networks and Systems, 919–929. https://doi.org/10.1007/978-3-030-66840-2_69

Siviy, C., Baker, L. M., Quinlivan, B. T., Porciuncula, F., Swaminathan, K., Awad, L. N., & Walsh, C. J. (2022). Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nature Biomedical Engineering, 1–17. https://doi.org/10.1038/s41551-022-00984-1

Song, D., Liu, S., Gao, Y., & Huang, Y. (2023). Human Factor Engineering Research for Rehabilitation Robots: A Systematic review. Computational Intelligence and Neuroscience, 2023(1). https://doi.org/10.1155/2023/2052231

Sukoco, B. M., Putra, R. A., Muqaffi, H. N., Lutfian, M. V., & Wicaksono, H. (2023). Comparative Study of ASEAN Research Productivity. SAGE Open, 13(1). https://doi.org/10.1177/21582440221145157

Turingan, C. (2021). TINGNAN: Inilunsad ng Ospital ng Maynila Medical Center ang Robotics Rehab program nito para sa mga pasyente na sumasailalim sa physical therapy [Image]. City of Manila. https://manila.gov.ph/tingnan-inilunsad-ng-ospital-ng-maynila-medical-center-ang-robotics-rehab-program-nito-para-sa-mga-pasyente-na-sumasailalim-sa-physical-therapy/?appgw_azwaf_jsc=EWv53Hjd3tseGo97Z12pz4tN9joESkSVvzIIarhB35Y

WHO Regional Office for the Western Pacific. (2017). Meeting on Rehabilitation in Universal Health Coverage, Manila, Philippines, 29-31 August 2017 : meeting report. https://iris.who.int/handle/10665/259501

Zhang, Y., Liu, X., Qiao, X., & Fan, Y. (2023). Characteristics and emerging trends in research on rehabilitation robots (2001-2020): A Bibliometric Study (Preprint). Journal of Medical Internet Research. https://doi.org/10.2196/42901

Downloads

Published

2025-04-05

How to Cite

Ompico, C. D., Dela Vega, J. F., Garcia, T., Ramos, C. M., Perez, E. M., Reyes, J. C., Banayo, J. N., Sy, A., Roxas, N. J., Munsayac, F. E. J. I., & Bugtai, N. (2025). Robotic Rehabilitation Devices in the Philippines: A Review of Recent Advancements . Recoletos Multidisciplinary Research Journal, 1(Special Issue), 115–124. https://doi.org/10.32871/rmrj25si.t2406

Issue

Section

Articles

Most read articles by the same author(s)