Quantifying Ecosystem Disservice in the Philippines through Water Release Potential Estimation Using ES-Based Model: The Case of Balanac Watershed

Authors

DOI:

https://doi.org/10.32871/rmrj2513.01.06

Keywords:

ecosystem service, InVEST, land cover change, water yield, watershed, Philippines

Abstract

Background: Rapid land use change and intensified climate change impacts have altered a landscape's natural hydrological processes and ecosystem services. These changes may cause flooding, water quality degradation, and water scarcity.
Methods: This study used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Water Yield model to estimate the potential amount of water released by varying land cover in the Balanac Watershed, Philippines. The model calculated the change in the amount of water that is being released as surface runoff from different land cover types across spatial units of the landscape.
Results: Findings showed that vegetated areas had the lowest water yield estimate, while built areas had the highest due to increased surface runoff.
Conclusion: The study offers valuable information, particularly regarding the relative differences in water releases across various land cover types. It contributes to the limited knowledge of ecosystem service-based modeling in the Philippines.

References

Annual water yield: InVEST user guide. (n.d.). The Natural Capital Project. Retrieved October 19, 2023 from http://releases.naturalcapitalproject.org/investuserguide/latest/en/annual_water_yield.html

Belete, M., Deng, J., Wang, K., Zhou, M., Zhu, E., Shifaw, E., & Bayissa, Y. (2020). Evaluation of satellite rainfall products for modeling water yield over the source Region of Blue Nile Basin. Science of the Total Environment, 708, 134834. https://doi.org/10.1016/j.scitotenv.2019.134834

Benra, F., De Frutos, A., Gaglio, M., Álvarez-Garretón, C., Felipe-Lucia, M., & Bonn, A. (2021). Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling & Software, 138, 104982. https://doi.org/10.1016/j.envsoft.2021.104982

Birkinshaw, S. J., O’Donnell, G., Glenis, V., & Kilsby, C. (2021). Improved hydrological modelling of urban catchments using runoff coefficients. Journal of Hydrology, 594, 125884. https://doi.org/10.1016/j.jhydrol.2020.125884

Bouguerra, S., Stiti, B., Khalfaoui, M., Jebari, S., Khaldi, A., & Berndtsson, R. (2024). Modeling ecosystem regulation services and performing cost–benefit analysis for climate change mitigation through nature-based solutions using inVEST models. Sustainability, 16(16), 7201–7201. https://doi.org/10.3390/su16167201

CGIAR-CSI. (2019, January 24). Global aridity index and potential evapotranspiration climate database v2. CGIAR-CSI. https://csidotinfo.wordpress.com/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/

Cong, W., Sun, X., Guo, H., & Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112, 106089. https://doi.org/10.1016/j.ecolind.2020.106089

Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., & Maghsood, F. F. (2021). Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621. https://doi.org/10.1016/j.jhydrol.2020.125621

Döhren, P., & Haase, D. (2022). Geospatial assessment of urban ecosystem disservices: An example of poisonous urban trees in Berlin, Germany. Urban Forestry & Urban Greening, 67, 127440. https://doi.org/10.1016/j.ufug.2021.127440

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). International Institute for Applied Systems Analysis.

Guo, M., Ma, S., Wang, L.-J., & Lin, C. (2021). Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China. Ecological Indicators, 127, 107732. https://doi.org/10.1016/j.ecolind.2021.107732

Guo, Q., Yu, C., Xu, Z., Yang, Y., & Wang, X. (2023). Impacts of climate and land-use changes on water yields: Similarities and differences among typical watersheds distributed throughout China. Journal of Hydrology: Regional Studies, 45, 101294. https://doi.org/10.1016/j.ejrh.2022.101294

Hu, Y., Gao, M., & Batunacun. (2020). Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environmental Development, 34, 100488. https://doi.org/10.1016/j.envdev.2019.100488

Iizuka, K., Johnson, B. A., Onishi, A., Magcale-Macandog, D. B., Endo, I., & Bragais, M. (2017). Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land, 6(2), 26. https://doi.org/10.3390/land6020026

Im, J. (2019). Green Streets to Serve Urban Sustainability: Benefits and Typology. Sustainability, 11(22), 6483. https://doi.org/10.3390/su11226483

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use / land cover with sentinel 2 and deep learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4704–4707. https://doi.org/10.1109/IGARSS47720.2021.9553499

Lang, Y., Song, W., & Zhang, Y. (2017). Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Physics and Chemistry of the Earth, Parts A/B/C, 101, 102–111. https://doi.org/10.1016/j.pce.2017.06.003

Mallari, N. A., Rosales, R. M., Castillo, G., Angeles, M. D., Francisco, H., Orbeta, E., Predo, C., Arcenas, A., Balangue, T., Lasmarias, N., Coroza, O., Masigan, J. P., Bautista, M. A., Edaño, J. W., Jimenez, J. P., Palermo, F., Parr, R. A., Shiraishi, J., Tee, C. K., & Uy, Q. A. (2024). Sukat ng kalikasan. Department of Environment and Natural Resources.

Paringit, E. C., & Abucay, E. R. (2017). LiDAR surveys and flood mapping of Sta. Cruz. UP Training Center for Applied Geodesy and Photogrammetry (TCAGP). https://dream.upd.edu.ph/assets/Publications/LiDAR-Technical-Reports/UPLB/LiDAR-Surveys-and-Flood-Mapping-of-Sta.-Cruz-River.pdf

Pei, H., Liu, M., Shen, Y., Xu, K., Zhang, H., Li, Y., & Luo, J. (2022). Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of the Total Environment, 809, 151153–151153. https://doi.org/10.1016/j.scitotenv.2021.151153

Philippine Statistics Authority. (2021). Population and housing statistics. https://psa.gov.ph/statistics/population-and-housing/node/164786

Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T. H., & Bullock, J. M. (2016). Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 569-570, 1418–1426. https://doi.org/10.1016/j.scitotenv.2016.06.227

Schilling, K. E., Jha, M. K., Zhang, Y.-K., Gassman, P. W., & Wolter, C. F. (2008). Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 44(7). https://doi.org/10.1029/2007wr006644

Sharma, S. (2017). Effects of urbanization on water resources–facts and figures. International Journal of Scientific and Engineering Research, 8(4), 433–459.

Sinasson S, K. G., Shackleton, C. M., Ruwanza, S., & Thondhlana, G. (2024). Contextual and socio-economic factors affected urban dwellers experiences of and vulnerability to ecosystem disservices. Scientific African, 26, e02404–e02404. https://doi.org/10.1016/j.sciaf.2024.e02404

Sit, K. Y., Ng, K. Y., & Zhang, H. (2024). Understanding typhoon-induced vegetation loss and potential ecosystem disservices from land use zonings perspective in high-density Hong Kong. Applied Geography, 170, 103345–103345. https://doi.org/10.1016/j.apgeog.2024.103345

Sparkman, S. A., Hogan, D. M., Hopkins, K. G., & Loperfido, J. V. (2017). Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design. Journal of the American Water Resources Association, 53(5), 1081–1094. https://doi.org/10.1111/1752-1688.12559

Tong, S. T. Y., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489. https://doi.org/10.1016/j.apgeog.2011.06.014

Tundu, C., Tumbare, M. J., & Kileshye Onema, J.-M. (2018). Sedimentation and its impacts/effects on river system and reservoir water quality: Case study of Mazowe catchment, Zimbabwe. Proceedings of the International Association of Hydrological Sciences, 377, 57–66. https://doi.org/10.5194/piahs-377-57-2018

Ureta, J. C., Trespalacio, G., Anastacio, N. J., Sapugay, A., & Ureta, J. (2022). Estimating sediment export and retention capacity of existing land cover in Balanac and Sta. Cruz watersheds, Philippines using InVEST-SDR model. Philippine Journal of Science, 151(5), 1963–1978. https://doi.org/10.56899/151.05.34

Vigerstol, K. L., & Aukema, J. E. (2011). A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management, 92(10), 2403–2409. https://doi.org/10.1016/j.jenvman.2011.06.040

von Döhren, P., & Haase, D. (2022). Geospatial assessment of urban ecosystem disservices: An example of poisonous urban trees in Berlin, Germany. Urban Forestry & Urban Greening, 67, 127440. https://doi.org/10.1016/j.ufug.2021.127440

Wohlfart, C., Mack, B., Liu, G., & Kuenzer, C. (2017). Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series: Exemplary analysis in mining, agriculture, forest, and urban areas. Applied Geography, 85, 73–88. https://doi.org/10.1016/j.apgeog.2017.06.004

Wu, F., Zhan, J., Chen, J., He, C., & Zhang, Q. (2015). Water yield variation due to forestry change in the head-water area of Heihe River Basin, Northwest China. Advances in Meteorology, 2015, 1–8. https://doi.org/10.1155/2015/786764

Yang, D. H., Liu, B., Tang, L., Chen, L., Li, X., & Xu, X. (2019). Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 182, 133–143. https://doi.org/10.1016/j.landurbplan.2018.10.011

Yifru, B. A., Chung, I.-M., Kim, M.-G., & Chang, S. W. (2021). Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African rift valley using integrated model. Journal of Hydrology: Regional Studies, 37, 100926. https://doi.org/10.1016/j.ejrh.2021.100926

Downloads

Published

2025-04-30

How to Cite

Trespalacio, G., Sapugay, A., Anastacio, N. J., Ureta, J. C., & Ureta, J. (2025). Quantifying Ecosystem Disservice in the Philippines through Water Release Potential Estimation Using ES-Based Model: The Case of Balanac Watershed. Recoletos Multidisciplinary Research Journal, 13(1), 71–81. https://doi.org/10.32871/rmrj2513.01.06

Issue

Section

Articles