Utilizing IOT and Geospatial Analytics for Sustainable Fisheries Management

Authors

DOI:

https://doi.org/10.32871/rmrj2412.01.15

Keywords:

IoT, GIS, fishery management, weather conditions, sustainability, mobile application, web application, Graham scan

Abstract

This study developed a software application that integrates Internet of Things (IoT) devices and weather data to visualize prime fishing locations using advanced spatial data techniques. The application features a dashboard that processes and displays real-time data, providing insights into fishing trends, fisherman activities, boat locations, and environmental conditions. The application uses the Graham scan method to generate a GIS grid heatmap for visualizing fish populations and trends, enhancing fisheries management capabilities. Comprehensive testing and refinement ensured the application's usability and adaptability. The results demonstrated high user satisfaction, with a 91% rating in usability and accuracy. The Graham Scan method successfully mapped fishing zones, achieving a 97.96% overlap in spatial-temporal data analysis, proving essential for data-driven decision-making in sustainable fisheries management.

References

Agcaoili, S. (2018). Geographic Information System-Based Suitability Analysis for Potential Shallow Tube-Well Irrigation Development. Recoletos Multidisciplinary Research Journal, 6(2), 35-49. https://doi.org/10.32871/rmrj1806.02.04

Anuchiracheeva, S., Demaine, H., Shivakoti, G., & Ruddle, K. (2003). Systematizing local knowledge using GIS: fisheries management in Bang Saphan Bay, Thailand. Ocean & Coastal Management, 46(11-12), 1049-1068. https://doi.org/10.1016/j.ocecoaman.2004.01.001

Bradley, D., Merrifield, M., Miller, K., Lomonico, S., Wilson, J., & Gleason, M. (2019). Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish and Fisheries, 20(3), 564-583 https://doi.org/10.1111/faf.12361

Calderwood, J. (2022). Smartphone application use in commercial wild capture fisheries. Reviews in Fish Biology and Fisheries, 32, 1063-1083. https://doi.org/10.1007/s11160-022-09727-6

Coutinho, R. W. L., & Boukerche, A. (2022). Towards a Novel Architectural Design for IoT-Based Smart Marine Aquaculture. IEEE Internet of Things Magazine, 5(3), 174-179. https://doi.org/10.1109/IOTM.001.2200065

Dash, M. K., Singh, C., Panda, G., & Sharma, D. (2023). ICT for sustainability and socio-economic development in fishery: a bibliometric analysis and future research agenda. Environmental Development and Sustainability, 25, 2201-2233. https://doi.org/10.1007/s10668-022-02131-x

De Freitas, D., & Tagliani, P. R. (2009). The use of GIS for the integration of traditional and scientific knowledge in supporting artisanal fisheries management in southern Brazil. Journal of Environmental Management, 90(6), 2071-2080. https://doi.org/10.1016/j.jenvman.2007.08.026

Gladju, J., Kamalam, B. S., & Kanagaraj, A. (2022). Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agricultural Technology, 2, 100061. https://doi.org/10.1016/j.atech.2022.100061

Jeyanathan, J. S., Kumar, K. N., Reddy, P. V., Chaithanya, C. V., Kumar, M. N., & Manikandan, P. (2023). GPS Assistive Communication Tool for Fishermen Community using Internet of Things. 2023 8th International Conference on Communication and Electronics Systems (ICCES), 361-364. https://doi.org/10.1109/ICCES57224.2023.10192755

Khatuwal, V. S., & Puri, D. (2022). Business Intelligence Tools for Dashboard Development. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), 128-131. https://doi.org/10.1109/ICIEM54221.2022.9853086

Kolding, J., Béné, C., & Bavinck, M. (2014). Small-scale fisheries: Importance, vulnerability, and deficient knowledge. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution, 317-331. https://doi.org/10.1002/9781118392607.ch22

Lamot, M., & Žalik, B. (2003). A fast polygon triangulation algorithm based on uniform plane subdivision. Computers & Graphics, 27(2), 239-253. https://doi.org/10.1016/S0097-8493(02)00281-9

Leleu, K., Alban, F., Pelletier, D., Charbonnel, E., Letourneur, Y., Boudouresque, C. (2012). Fishers' perceptions as indicators of the performance of Marine Protected Areas (MPAs). Marine Policy, 36(2), 414-422. https://doi.org/10.1016/j.marpol.2011.06.002

Morzaria-Luna, H. N., Turk-Boyer, P., Polanco-Mizquez, E., Downton-Hoffman, C., Cruz-Piñón, G., Carrillo-Lammens, T., Loaiza-Villanueva, R., Valdivia-Jiménez, P., Sánchez-Cruz, A., Peña-Mendoza, V., Montserrat López-Ortiz, A. M., Koch, V., Vázquez-Vera, L., Arreola-Lizárraga, J. A., Amador-Castro, I., Castillo, A., & Munguia-Vega, A. (2020). Coastal and Marine Spatial Planning in the Northern Gulf of California, Mexico: Consolidating stewardship, property rights, and enforcement for ecosystem-based fisheries management. Ocean & Coastal Management, 105316. https://doi.org/10.1016/j.ocecoaman.2020.105316

Musembi, P., Fulanda, B., Kairo, J., Githaiga, M. (2019). Species composition, abundance and fishing methods of small-scale fisheries in the seagrass meadows of Gazi Bay, Kenya. Journal of the Indian Ocean Region, 15(2), 139-156. https://doi.org/10.1080/19480881.2019.1603608

Ong, S. P., Cholia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G., & Persson, K. (2015). The Materials Application Programming Interface (API): A simple, flexible, and efficient API for materials data based on REpresentational State Transfer (REST) principles. Computational Materials Science, 97, 209-215. https://doi.org/10.1016/j.commatsci.2014.10.037

Patil, P., & Sachapara, V. (2017). Providing smart agricultural solutions/techniques by using Iot based toolkit. 2017 International Conference on Trends in Electronics and Informatics (ICEI), 327-331. https://doi.org/10.1109/ICOEI.2017.8300942

Sharif, M., Naqvi, S. Z., Raza, M., & Haider, W. (2012). A new Approach to Compute Convex Hull. Innovative Systems Design and Engineering, 2(3).

Tilley, A., Dos Reis Lopes, J., & Wilkenson, S. (2020). PeskAAS: A near-real-time, open-source monitoring, and analytics system for small-scale fisheries. PLoS One, 15(11), e0234760. https://doi.org/10.1371/journal.pone.0234760

Wang, X., Zhou, X., & Wang, S. (2012). Summarizing Large-Scale Database Schema Using Community Detection. Journal of Computer Science and Technology, 27, 515-526. https://doi.org/10.1007/s11390-012-1240-1

Downloads

Published

2024-06-30

How to Cite

Amora, E. N., & Cuizon, J. (2024). Utilizing IOT and Geospatial Analytics for Sustainable Fisheries Management. Recoletos Multidisciplinary Research Journal, 12(1), 195–214. https://doi.org/10.32871/rmrj2412.01.15

Issue

Section

Articles