Effects of Mango Pectin Concentration on the Calcium Pectate Bead Properties and on the Cell Leakage of Yeast (Saccharomyces cerevisiae) Immobilized by Entrapment Technique

Authors

  • Andrio Alinsug Department of Chemical Engineering, University of San Carlos, Cebu City, Philippines https://orcid.org/0009-0000-4676-985X
  • Chenry Obiedo Department of Chemical Engineering, University of San Carlos, Cebu City, Philippines https://orcid.org/0009-0005-5830-7579
  • Jahzeel Li Padogdog Department of Chemical Engineering, University of San Carlos, Cebu City, Philippines
  • Camila Flor Y. Lobarbio (1) Department of Chemical Engineering, University of San Carlos, Cebu City, Philippines; (2) The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand https://orcid.org/0000-0002-9581-5477

DOI:

https://doi.org/10.32871/rmrj2412.01.04

Keywords:

calcium pectate beads, cell leakage, immobilization, mango pectin, yeast entrapment

Abstract

Immobilized yeast cells have advantages for use in industries due to their stability, viability, and productivity. As a support material, pectin is suitable because of its stability, strong mechanical attributes, and favorable absorption properties. In this study, the influence of mango pectin concentration on the CP bead characteristics and the leakage of immobilized yeast cells were determined. Results have indicated that yeast cells can be immobilized using low-methoxyl pectin (LMP) from mango peels via entrapment technique. Pectin concentration did not affect the size (3.0323 to 3.4315 mm) of the CP beads. Only 5% and 7% (w/v) pectin concentrations produced spherical beads (SF<0.05). Increasing the pectin concentration from 3% to 7% (w/v) resulted in a 36.21% decrease in swelling ratio for CP beads with yeast. The pectin concentration significantly affects the cell leakage (p-value<0.05). The results further indicate the feasibility of using locally available materials as a matrix for immobilization.

References

Abdul Manaf, S. A., Mohamad Fuzi SitI, F. Z., Low, K. O., Gurumurthy, H., Abdul Manas, N. H., Md, I. R., & Chia, K. S. (2021). Carbon nanomaterial properties help to enhance xylanase production from recombinant Kluyveromyces lactis through a cell immobilization method. Applied Microbiology and Biotechnology, 105(21-22), 8531–8544. https://doi.org/10.1007/s00253-021-11616-0

Anthon, G. E., & Barrett, D. M. (2008). Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: Application to tomato products. Food Chemistry, 110(1), 239–247. https://doi.org/10.1016/j.foodchem.2008.01.042

Bleve, G., Tufariello, M., Vetrano, C., Mita, G., & Grieco, F. (2016). Simultaneous alcoholic and malolactic fermentations by saccharomyces cerevisiae and oenococcus oeni cells co-immobilized in alginate beads. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00943

Bokkhim, H., Bansal, N., Grøndahl, L., & Bhandari, B. (2016). Characterization of alginate–lactoferrin beads prepared by extrusion gelation method. Food Hydrocolloids, 53, 270–276. https://doi.org/10.1016/j.foodhyd.2014.12.002

Bokkhim, H., Neupane, P., Gurung, S., & Shrestha, R. (2018). Encapsulation of Saccharomyces cerevisiae in alginate beads and its application for wine making. Journal of Food Science and Technology Nepal, 10, 18–23. https://doi.org/10.3126/jfstn.v10i0.19631

Bucke, C. (1983). Immobilized cells. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 300(1100), 369–389. https://doi.org/10.1098/rstb.1983.0011

Callone, E., Campostrini, R., Carturan, G., Cavazza, A., & Guzzon, R. (2008). Immobilization of yeast and bacteria cells in alginate microbeads coated with silica membranes: Procedures, physico-chemical features and bioactivity. Journal of Materials Chemistry, 18(40), 4839. https://doi.org/10.1039/b807301e

Capel, F., Nicolai, T., Durand, D., Boulenguer, P., & Langendorff, V. (2005). Influence of chain length and polymer concentration on the gelation of (amidated) low-methoxyl pectin induced by calcium. Biomacromolecules, 6(6), 2954–2960. https://doi.org/10.1021/bm0501858

Damayanti, A., Kumoro, A. C., & Bahlawan, Z. A. S. (2021). Review calcium alginate beads as immobilizing matrix of functional cells: Extrusion dripping method, characteristics, and application. IOP Conference Series: Materials Science and Engineering, 1053(1), 012017. https://doi.org/10.1088/1757-899x/1053/1/012017

Duarte, J. C., Rodrigues, J. A. R., Moran, P. J. S., Valença, G. P., & Nunhez, J. R. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express, 3(1), 31. https://doi.org/10.1186/2191-0855-3-31

Fraeye, I., Duvetter, T., Doungla, E., Van Loey, A., & Hendrickx, M. (2010). Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology, 21(5), 219–228. https://doi.org/10.1016/j.tifs.2010.02.001

Gragasin, M. C. B., Ligisan, A. R., Torres, R. C., & Estrella, R. (2014). Utilization of mango peels as a source of pectin. PHilMech Technical Bulletin, 4(1).

Günter, E. A., Popeyko, O. V., Markov, P. A., Martinson, E. A., Litvinets, S. G., Durnev, E. A., Popov, S. V., & Ovodov, Y. S. (2014). Swelling and morphology of calcium pectinate gel beads obtained from Silene vulgaris callus modified pectins. Carbohydrate Polymers, 103, 550–557. https://doi.org/10.1016/j.carbpol.2013.12.071

Hernández, R. M., Orive, G., Murua, A., & Pedraz, J. L. (2010). Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 62(7-8), 711–730. https://doi.org/10.1016/j.addr.2010.02.004

Hotchkiss, A. T., Savary, B. J., Cameron, R. G., Chau, H. K., Brouillette, J., Luzio, G. A., & Fishman, M. L. (2002). Enzymatic modification of pectin to increase its calcium sensitivity while preserving its molecular weight. Journal of Agricultural and Food Chemistry, 50(10), 2931–2937. https://doi.org/10.1021/jf011187w

Jha, A., & Kumar, A. (2019). Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess and Biosystems Engineering, 42(12), 1893–1901. https://doi.org/10.1007/s00449-019-02199-2

Kar, F., & Arslan, N. (1999). Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship. Carbohydrate Polymers, 40(4), 277–284. https://doi.org/10.1016/s0144-8617(99)00062-4

Kongruang, S., & Wonganu, B. (2009). Entrapment by Ca-alginate immobilized yeast cells for dried longan wine production. Current Research Topics in Applied Microbiology and Microbial Biotechnology, 386–391. https://doi.org/10.1142/9789812837554_0081

Kosseva, M. R. (2011). Immobilization of microbial cells in food fermentation processes. Food and Bioprocess Technology, 4(6), 1089–1118. https://doi.org/10.1007/s11947-010-0435-0

Kostov, G., Angelov, M., Mihaylov, I., & Poncelet, D. (2010). Mechanical properties of Ca-alginate beads for ethanol fermentation with immobilized yeast. Revue de Génie Industriel, 5, 25–35.

Koubala, B. B., Kansci, G., Mbome, L. I., Crépeau, M. J., Thibault, J. F., & Ralet, M. C. (2008). Effect of extraction conditions on some physicochemical characteristics of pectins from “Améliorée” and “Mango” mango peels. Food Hydrocolloids, 22(7), 1345–1351. https://doi.org/10.1016/j.foodhyd.2007.07.005

Lee, B.-B., Chan, E.-S., & Ravindra, P. (2014). Calcium pectinate beads formation: Shape and size analysis. Journal of Engineering and Technological Sciences, 46(1), 78–92. https://doi.org/10.5614/j.eng.technol.sci.2014.46.1.5

Many, D., Ibrahim, A. S. S., & El-Diwany, A. (2019). Biosynthesis of alkaline protease by alkaliphilic Bacillus sp. NPST-AK15 cells immobilized in gel matrices. Egyptian Pharmaceutical Journal, 18(3), 201. https://doi.org/10.4103/epj.epj_2_19

Mellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 673. https://doi.org/10.3390/ma13030673

Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K., & Sforza, S. (2016). Pectin content and composition from different food waste streams. Food Chemistry, 201, 37–45. https://doi.org/10.1016/j.foodchem.2016.01.012

Navrátil, M., Gemeiner, P., Klein, J., Šturdík, E., Malovíková, A., Nahálka, J., Vikartovská, A., Dömény, Z., & Šmogrovičová, D. (2002). Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages. Artificial Cells, Blood Substitutes, and Biotechnology, 30(3), 199–218. https://doi.org/10.1081/bio-120004340

Nazos, T. T., & Ghanotakis, D. F. (2021). Biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells. Archives of Microbiology, 203(9), 5805–5816. https://doi.org/10.1007/s00203-021-02570-6

Nedović, V., Gibson, B., Mantzouridou, T. F., Bugarski, B., Djordjević, V., Kalušević, A., Paraskevopoulou, A., Sandell, M., Šmogrovičová, D., & Yilmaztekin, M. (2015). Aroma formation by immobilized yeast cells in fermentation processes. Yeast, 32, 173–216. https://doi.org/10.1002/yea.3042

Panesar, P. S., Kennedy, J. F., Knill, C. J., & Kosseva, M. R. (2007). Applicability of pectate-entrapped Lactobacillus casei cells for l(+) lactic acid production from whey. Applied Microbiology and Biotechnology, 74(1), 35–42. https://doi.org/10.1007/s00253-006-0633-x

Partovinia, A., & Vatankhah, E. (2019). Experimental investigation into size and sphericity of alginate micro-beads produced by electrospraying technique: Operational condition optimization. Carbohydrate Polymers, 209, 389–399. https://doi.org/10.1016/j.carbpol.2019.01.019

Pereira, A. P., Mendes-Ferreira, A., Estevinho, L. M., & Mendes-Faia, A. (2014). Mead production: Fermentative performance of yeasts entrapped in different concentrations of alginate. Journal of the Institute of Brewing, 120(4), 575–580. https://doi.org/10.1002/jib.175

Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W., & Heng, P. W. S. (2013). Microencapsulation of microbial cells. Journal of Food Engineering, 116(2), 369–381. https://doi.org/10.1016/j.jfoodeng.2012.12.022

Sayed, M. A., Kumar, J., Rahman, Md. R., Noor, F., & Alam, M. A. (2022). Effect of extraction parameters on the yield and quality of pectin from mango (Mangifera indica L.) peels. Discover Food, 2(1). https://doi.org/10.1007/s44187-022-00029-1

Sevda, S., & Rodrigues, L. (2014). Preparation of guava wine using immobilized yeast. Journal of Biochemical Technology, 5(4), 819–822. https://jbiochemtech.com/article/preparation-of-guava-wine-using-immobilized-yeast

Singthong, J., Cui, S., Ningsanond, S., & Goff, H. D. (2004). Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy () pectin. Carbohydrate Polymers, 58(4), 391–400. https://doi.org/10.1016/j.carbpol.2004.07.018

Soo, C. L., Chen, C. A., Bojo, O., & Hii, Y. S. (2017). Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: Bead stability, cell growth, and ammonia removal. International Journal of Polymer Science, 2017. https://doi.org/10.1155/2017/6951212

Sousa-Dias, M. L., Paula, V. B., Dias, L. G., & Estevinho, L. M. (2021). Mead production using immobilized cells of saccharomyces cerevisiae: Reuse of sodium alginate beads. Processes, 9(4), 724. https://doi.org/10.3390/pr9040724

Sriamornsak, P. (1998). Preliminary investigation of some polysaccharides as a carrier for cell entrapment. European Journal of Pharmaceutics and Biopharmaceutics, 46(2), 233–236. https://doi.org/10.1016/s0939-6411(98)00021-6

Sriamornsak, P., & Kennedy, R. A. (2008). Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. International Journal of Pharmaceutics, 358(1-2), 205–213. https://doi.org/10.1016/j.ijpharm.2008.03.009

Sriamornsak, P., & Kennedy, R. A. (2010). Effect of a small molecule on diffusion and swelling properties of selected polysaccharide gel beads. Carbohydrate Polymers, 79(1), 219–223. https://doi.org/10.1016/j.carbpol.2009.07.059

Sudhakar, D. V., & Maini, S. B. (2000). Isolation and characterization of mango peel pectins. Journal of Food Processing and Preservation, 24(3), 209–227. https://doi.org/10.1111/j.1745-4549.2000.tb00414.x

Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. A. (1997). Chemistry and uses of pectin — A review. Critical Reviews in Food Science and Nutrition, 37(1), 47–73. https://doi.org/10.1080/10408399709527767

Valach, M., Navrátil, M., Horváthová, V., Zigová, J., Šturdík, E., Hrabárová, E., & Gemeiner, P. (2006). Efficiency of a fixed-bed and a gas-lift three-column reactor for continuous production of ethanol by pectate-and alginate-immobilized Saccharomyces cerevisiae cells. Chemical Papers, 60(2). https://doi.org/10.2478/s11696-006-0028-6

Voo, W. P., Lee, B. B., Idris, A., Islam, A., Tey, B. T., & Chan, E. S. (2015). Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile. RSC Advances, 5(46), 36687–36695. https://doi.org/10.1039/c5ra03862f

Voo, W. P., Ravindra, P., Tey, B.-T., & Chan, E. S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111(3), 294–299. https://doi.org/10.1016/j.jbiosc.2010.11.010

Yapo, B. M., & Koffi, K. L. (2013). Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. Foods, 3(1), 1–12. https://doi.org/10.3390/foods3010001

Zdarta, J., Meyer, A., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), 92. https://doi.org/10.3390/catal8020092

Zhao, S., Zhang, Y., Liu, Y., Yang, F., Xiu, Z., Ma, X., & Sun, G. (2018). Preparation and optimization of calcium pectate beads for cell encapsulation. Journal of Applied Polymer Science, 135(2). https://doi.org/10.1002/app.45685

Zhu, Y. (2007). Immobilized cell fermentation for production of chemicals and fuels. In S. T. Yang (Ed.), Bioprocessing for Value-Added Products from Renewable Resources (pp. 373–396). Elsevier Science. https://doi.org/10.1016/b978-044452114-9/50015-3

Downloads

Published

2024-05-02

How to Cite

Alinsug, A., Obiedo, C., Padogdog, J. L., & Lobarbio, C. F. Y. (2024). Effects of Mango Pectin Concentration on the Calcium Pectate Bead Properties and on the Cell Leakage of Yeast (Saccharomyces cerevisiae) Immobilized by Entrapment Technique. Recoletos Multidisciplinary Research Journal, 12(1), 41–55. https://doi.org/10.32871/rmrj2412.01.04

Issue

Section

Articles