Perfect Outer-connected Domination in the Join and Corona of Graphs
DOI:
https://doi.org/10.32871/rmrj1604.02.01Keywords:
perfect dominating set, outer-connected dominating set, perfect outer-connected dominating setAbstract
References
[1] B. Arriola, and S. Canoy, Jr., Doubly Connected Domination in the Corona and Lexicographic Product of Graphs. Applied Mathematical Sciences, Vol. 8, 2014, no. 31, 1521-1533.
[2] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18(1993), 136-148.
[3] E.J. Cockayne, and S.T. Hedetniemi Towards a theory of domination in graphs, Networks, (1977) 247-261.
[4] D.P. Salve and E.L. Enriquez Inverse Perfect Domination in Graphs, Global Journal of Pure and Applied Mathematics. Vol. 12, No. 1 (2016), pp. 1-10. http://www.ripublication.com/gjpam.
[2] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18(1993), 136-148.
[3] E.J. Cockayne, and S.T. Hedetniemi Towards a theory of domination in graphs, Networks, (1977) 247-261.
[4] D.P. Salve and E.L. Enriquez Inverse Perfect Domination in Graphs, Global Journal of Pure and Applied Mathematics. Vol. 12, No. 1 (2016), pp. 1-10. http://www.ripublication.com/gjpam.
Downloads
Published
2016-12-31
How to Cite
Enriquez, E., Fernandez, V., Punzalan, T., & Dayap, J. (2016). Perfect Outer-connected Domination in the Join and Corona of Graphs. Recoletos Multidisciplinary Research Journal, 4(2). https://doi.org/10.32871/rmrj1604.02.01
Issue
Section
Articles
License
Copyright of the Journal belongs to the University of San Jose-Recoletos