Construction of Difference Sets from Unions of Cyclotomic Classes of Order N=14

Keywords: difference set, cyclotomic class, union, computer search

Abstract

abstract2.PNG

References

Balmaceda, J. M. P., & Estrella, B. M. (2021). Difference sets from unions of cyclotomic classes of orders 12, 20, and 24. Philippine Journal of Science, 150 (6B), 1803–1810.

Baumert, L.D., & Fredricksen, H. (1967). The cyclotomic numbers of order eighteen with applications to difference sets. Mathematics of Computation, 21(98), 204-219. https://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0223322-5/S0025-5718-1967-0223322-5.pdf

Beth, T., Jungnickel, D., & Lenz, H. (1999). Design theory (2nd ed., Vol. 1). Cambridge University Press.

Ding, C. (2015). Codes from difference sets. World Scientific.

Estrella, B. M. (2019). Generating difference sets from Unions of Cyclotomic classes [Unpublished master’s thesis]. University of the Philippines Diliman.

Feng, T., Momihara, K., & Xiang, Q. (2015). Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes. Combinatorica, 35(4), 413–434.

Feng, T., & Xiang, Q. (2012). Cyclotomic constructions of Skew Hadamard difference sets. Journal of Combinatorial Theory, Series A, 119(1), 245–256. https://doi.org/10.1016/j.jcta.2011.08.007

Hall, M. (1956). A survey of difference sets. Proceedings of the American Mathematical Society, 7(6), 975-986.

Hayashi, H. S. (1965). Computer investigation of difference sets. Mathematics of Computation, 19(89), 73–78. https://doi.org/10.1090/s0025-5718-1965-0171368-6

Momihara, K. (2013). Inequivalence of Skew Hadamard difference sets and triple intersection numbers modulo a prime. The Electronic Journal of Combinatorics, 20(4). https://doi.org/10.37236/3762

Momihara, K., Wang, Q., & Xiang, Q. (2019). 9. Cyclotomy, difference sets, sequences with low correlation, strongly regular graphs and related geometric substructures. In K.-U. Schmidt & A. Winterhof (Eds.), Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications (pp. 173–198). De Gruyter.

Moore, E. H., & Pollatsek, H. S. (2013). Difference sets: Connecting algebra, combinatorics, and geometry (Vol. 67). American Mathematical Society.

Xia, B. (2018). Cyclotomic difference sets in finite fields. Mathematics of Computation, 87(313), 2461–2482. https://doi.org/10.1090/mcom/3311

Published
2022-05-29
How to Cite
EstrellaB. (2022). Construction of Difference Sets from Unions of Cyclotomic Classes of Order N=14. Recoletos Multidisciplinary Research Journal, 10(1). https://doi.org/10.32871/rmrj2210.01.04
Section
Articles