Utilization of Wastewater from Different Sources as Potential Electrical Energy Source

Keywords: wastewater, carbon electrodes, biofilm anode, microbial fuel cell, electrical energy

Abstract

This study is about the generated electricity from wastewater using carbon electrodes with the absence/presence of salt bridge through the biofilm anode of the microbial fuel cell (MFC) technology. The three wastewater samples used were from a pond, an abaca pulp mill, and rice fields. Results showed that one of the abaca pulp mill treatments, using carbon rod electrodes with salt bridge presence, reached the highest mean voltage and current to 578.7 mV and 0.2022 mV, respectively. The study revealed that the number of sensible power generation days, from start to end of experimentation, has a significant difference between treatments. Throughout the 20-day fermentation process, a total count of 8.94x105 colony forming units (CFU) per ml was found and purified from the biofilm anodes from pond wastewater. Likewise, 9.14x105 CFU per ml isolates from the abaca pulp mill, and 1.65x106 CFU per ml isolates from the rice field.

References

Abedinzadeh, N., Shariat, M., Monavari, S. M., & Pendashteh, A. (2018). Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. Process Safety and Environmental Protection, 116, 82-91. https://doi.org/10.1016/j.psep.2018.01.015

Ashoka, H., Shalini, R., & Bhat, P. (2012). Comparative studies on electrodes for the construction of microbial fuel cell. International Journal of Advanced Biotechnology and Research, 3(4), 785-789. https://www.researchgate.net/publication/325486176_COMPARATIVE_STUDIES_ON_ELECTRODES_FOR_THE_CONSTRUCTION_OF_MICROBIAL_FUEL_CELL

Atanacio, M. A. R., Tan, D. L. S., & Amestoso, F. J. (2010). Cassava grates processing wastes as source of electrical energy. Annals of Tropical Research, 32(1), 55-71. https://doi.org/10.32945/atr3214.2010

Banaticla, J. E. G., & Rivera, W. L. (2011). Detection and subtype identification of Blastocystis isolates from wastewater samples in the Philippines. Journal of Water and Health, 9(1), 128-137. 10.2166/wh.2010.127

Brockway, P. E., Owen, A., Brand-Correa, L. I., & Hardt, L. (2019). Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nature Energy, 4, 612-621. https://doi.org/10.1038/s41560-019-0425-z

Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8(3), 489-494. https://doi.org/10.1016/j.elecom.2006.01.010

Gellman, I. (1988). Environmental effects of paper industry wastewaters-an overview. Water Science and Technology, 20(2), 59-65. https://doi.org/10.2166/wst.1988.0046

Gosse, J. L., Engel, B. J., Rey, F. E., Harwood, C. S., Scriven, L. E., &Flickinger, M. C. (2007). Hydrogen production by photoreactivenanoporous latex coatings of nongrowing Rhodopseudomonaspalustris CGA009. Biotechnology Progress, 23(1), 124-130. 10.1021/bp060254+

Jardon, M. (2006, May 10). Microbial fuel cells from Rhodopherax ferrireducens.The Science Creative Quarterly. https://www.scq.ubc.ca/microbial-fuel-cells-from-rhodopherax-ferrireducens/

Jensen, O., & Wu, H. (2018). Urban water security indicators: Development and pilot. Environmental Science & Policy, 83, 33-45. https://doi.org/10.1016/j.envsci.2018.02.003

Kato Marcus, A., Torres, C. I., &Rittmann, B. E. (2007). Conduction based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171-1182. 10.1002/bit.21533.

Kharbanda, P., Madaan, T., Sharma, I., Vashishtha, S., Kumar, P., Chauhan, A., Mittal, S., Bangruwa, J. S., &Verma, V. (2019). Ferrites: Magnetic materials as an alternate source of green electrical energy. Heliyon, 5, e01151. 10.1016/j.heliyon.2019.e01151

Kim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568-2577. https://doi.org/10.1016/j.biortech.2006.09.036

Li, J. (2013). An experimental study of microbial fuel cells for electricity-generating: Performance characterization and capacity improvement. Journal of Sustainable Bioenergy Systems, 3(3), 171-178. 10.4236/jsbs.2013.33024

Liu, J., Chen, X., Cao, S., & Yang, H. (2019). Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management, 187, 103-121. https://doi.org/10.1016/j.enconman.2019.02.080

Liu, X., Shi, L., &Gu, J. D. (2018). Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnology Advances, 36(7), 1815-1827. https://doi.org/10.1016/j.biotechadv.2018.07.001

Logan, B. E. (2005). Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology, 52(1-2), 31-37. 10.2166/wst.2005.0495

Lyngberg, O. K., Ng, C. P., Thiagarajan, V., Scriven, L. E., &Flickinger, M. C. (2001). Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli. Biotechnology Progress, 17(6), 1169-1179. https://doi.org/10.1021/bp0100979

Marzougui, H., Kadri, A., Martin, J. P., Amari, M., Pierfederici, S., & Bacha, F. (2019). Implementation of energy management strategy of hybrid power source for electrical vehicle. Energy Conversion and Management, 195, 830-843. https://doi.org/10.1016/j.enconman.2019.05.037

Min, B., Kim, J.R., Oh, S.E., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39(20), 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037

Rossi, R., Cario, B. P., Santoro, C., Yang, W., Saikaly, P. E., & Logan, B. E. (2019). Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environmental Science & Technology, 53(7), 3977-3986. 10.1021/acs.est.8b06004

Ryu, H., & Kim, S. W. (2019). Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small. https://doi.org/10.1002/smll.201903469

Tan, D. L. S., Tan, J. D., Atanacio, M.A.R., & Delantar, R. (2013). Potential of rootcrops as source of electrical energy. Annals of Tropical Research, 35(2), 22-39. 10.32945/atr3522.2013

Treesubsuntorn, C., Chaiworn, W., Surareungchai, W., &Thiravetyan, P. (2019). Increasing of electricity production from Echinodosuscordifolius-microbial fuel cell by inoculating Bacillus thuringiensis. Science of the Total Environment, 686, 538-545. https://doi.org/10.1016/j.scitotenv.2019.06.063

Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., &Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103, 13-29. https://doi.org/10.1016/j.rser.2018.12.027

Zielke, E. A. (2005). Design of a single chamber microbial fuel cell. http://www.lacc-terryb.com/files/Engr_499_final_zielke.pdf
Published
2021-05-28
How to Cite
HagonobM., & CasinilloL. (2021). Utilization of Wastewater from Different Sources as Potential Electrical Energy Source. Recoletos Multidisciplinary Research Journal, 9(1), 39-54. https://doi.org/10.32871/rmrj2109.01.04
Section
Articles