Utilization of Wastewater from Different Sources as Potential Electrical Energy Source
DOI:
https://doi.org/10.32871/rmrj2109.01.04Keywords:
wastewater, carbon electrodes, biofilm anode, microbial fuel cell, electrical energyAbstract
This study is about the generated electricity from wastewater using carbon electrodes with the absence/presence of salt bridge through the biofilm anode of the microbial fuel cell (MFC) technology. The three wastewater samples used were from a pond, an abaca pulp mill, and rice fields. Results showed that one of the abaca pulp mill treatments, using carbon rod electrodes with salt bridge presence, reached the highest mean voltage and current to 578.7 mV and 0.2022 mV, respectively. The study revealed that the number of sensible power generation days, from start to end of experimentation, has a significant difference between treatments. Throughout the 20-day fermentation process, a total count of 8.94x105 colony forming units (CFU) per ml was found and purified from the biofilm anodes from pond wastewater. Likewise, 9.14x105 CFU per ml isolates from the abaca pulp mill, and 1.65x106 CFU per ml isolates from the rice field.
References
Ashoka, H., Shalini, R., & Bhat, P. (2012). Comparative studies on electrodes for the construction of microbial fuel cell. International Journal of Advanced Biotechnology and Research, 3(4), 785-789. https://www.researchgate.net/publication/325486176_COMPARATIVE_STUDIES_ON_ELECTRODES_FOR_THE_CONSTRUCTION_OF_MICROBIAL_FUEL_CELL
Atanacio, M. A. R., Tan, D. L. S., & Amestoso, F. J. (2010). Cassava grates processing wastes as source of electrical energy. Annals of Tropical Research, 32(1), 55-71. https://doi.org/10.32945/atr3214.2010
Banaticla, J. E. G., & Rivera, W. L. (2011). Detection and subtype identification of Blastocystis isolates from wastewater samples in the Philippines. Journal of Water and Health, 9(1), 128-137. 10.2166/wh.2010.127
Brockway, P. E., Owen, A., Brand-Correa, L. I., & Hardt, L. (2019). Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nature Energy, 4, 612-621. https://doi.org/10.1038/s41560-019-0425-z
Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8(3), 489-494. https://doi.org/10.1016/j.elecom.2006.01.010
Gellman, I. (1988). Environmental effects of paper industry wastewaters-an overview. Water Science and Technology, 20(2), 59-65. https://doi.org/10.2166/wst.1988.0046
Gosse, J. L., Engel, B. J., Rey, F. E., Harwood, C. S., Scriven, L. E., &Flickinger, M. C. (2007). Hydrogen production by photoreactivenanoporous latex coatings of nongrowing Rhodopseudomonaspalustris CGA009. Biotechnology Progress, 23(1), 124-130. 10.1021/bp060254+
Jardon, M. (2006, May 10). Microbial fuel cells from Rhodopherax ferrireducens.The Science Creative Quarterly. https://www.scq.ubc.ca/microbial-fuel-cells-from-rhodopherax-ferrireducens/
Jensen, O., & Wu, H. (2018). Urban water security indicators: Development and pilot. Environmental Science & Policy, 83, 33-45. https://doi.org/10.1016/j.envsci.2018.02.003
Kato Marcus, A., Torres, C. I., &Rittmann, B. E. (2007). Conduction based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171-1182. 10.1002/bit.21533.
Kharbanda, P., Madaan, T., Sharma, I., Vashishtha, S., Kumar, P., Chauhan, A., Mittal, S., Bangruwa, J. S., &Verma, V. (2019). Ferrites: Magnetic materials as an alternate source of green electrical energy. Heliyon, 5, e01151. 10.1016/j.heliyon.2019.e01151
Kim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568-2577. https://doi.org/10.1016/j.biortech.2006.09.036
Li, J. (2013). An experimental study of microbial fuel cells for electricity-generating: Performance characterization and capacity improvement. Journal of Sustainable Bioenergy Systems, 3(3), 171-178. 10.4236/jsbs.2013.33024
Liu, J., Chen, X., Cao, S., & Yang, H. (2019). Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management, 187, 103-121. https://doi.org/10.1016/j.enconman.2019.02.080
Liu, X., Shi, L., &Gu, J. D. (2018). Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnology Advances, 36(7), 1815-1827. https://doi.org/10.1016/j.biotechadv.2018.07.001
Logan, B. E. (2005). Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology, 52(1-2), 31-37. 10.2166/wst.2005.0495
Lyngberg, O. K., Ng, C. P., Thiagarajan, V., Scriven, L. E., &Flickinger, M. C. (2001). Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli. Biotechnology Progress, 17(6), 1169-1179. https://doi.org/10.1021/bp0100979
Marzougui, H., Kadri, A., Martin, J. P., Amari, M., Pierfederici, S., & Bacha, F. (2019). Implementation of energy management strategy of hybrid power source for electrical vehicle. Energy Conversion and Management, 195, 830-843. https://doi.org/10.1016/j.enconman.2019.05.037
Min, B., Kim, J.R., Oh, S.E., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39(20), 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
Rossi, R., Cario, B. P., Santoro, C., Yang, W., Saikaly, P. E., & Logan, B. E. (2019). Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environmental Science & Technology, 53(7), 3977-3986. 10.1021/acs.est.8b06004
Ryu, H., & Kim, S. W. (2019). Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small. https://doi.org/10.1002/smll.201903469
Tan, D. L. S., Tan, J. D., Atanacio, M.A.R., & Delantar, R. (2013). Potential of rootcrops as source of electrical energy. Annals of Tropical Research, 35(2), 22-39. 10.32945/atr3522.2013
Treesubsuntorn, C., Chaiworn, W., Surareungchai, W., &Thiravetyan, P. (2019). Increasing of electricity production from Echinodosuscordifolius-microbial fuel cell by inoculating Bacillus thuringiensis. Science of the Total Environment, 686, 538-545. https://doi.org/10.1016/j.scitotenv.2019.06.063
Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., &Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103, 13-29. https://doi.org/10.1016/j.rser.2018.12.027
Zielke, E. A. (2005). Design of a single chamber microbial fuel cell. http://www.lacc-terryb.com/files/Engr_499_final_zielke.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright of the Journal belongs to the University of San Jose-Recoletos