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Abstract
The paper introduced the concept of a fractal distribution using a power-law 

distribution. It proceeds to determining the relationship between fractal and exponential 
distribution using a logarithmic transformation of a fractal random variable which turns out 
to be exponentially distributed. It also considered finding the point estimator of fractional 
dimension and its statistical characteristics. It was shown that the maximum likelihood 
estimator of the fractional dimension λ is biased. Another estimator was found and shown 
to be a uniformly minimum variance unbiased estimator (UMVUE) by Lehmann-Scheffe’s 
theorem.
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1.0 Introduction
Fractals are normally associated with geometry 

in the tradition of Mandelbrot (1983). Likewise, in 
an analytic sense Mandelbrot and Van Ness (1968) 
described fractals as continuous, but nowhere 
differentiable functions such as the path traced 
by a standard Brownian process {βt: t ≥ 0}. In this 
paper, we considered yet another characterization 
of fractals; namely as data with more smaller values 
than larger ones (e.g. income distribution). This 
idea of migrating from fractal geometry to fractal 
statistics was uncovered by Padua and Borres 
(2013). A natural framework for studying these 
data is to assume a Pareto distribution:

which we shall henceforth refer to as a fractal 
distribution with dimension λ, where λ takes values 
between integral values, and θ is the minimum 
of random variables {x1,x2,…,xn}. Equation (1) 
was derived by Padua et al. (2013) using the 
characteristics of fractals, self-similarity and 
fractional dimension. This function is self-similar, 
that is, it retains the same shape at all scales:

hence, the name fractal distribution. Given 
a random sample {x1,x2,…,xn} from (1), we are 
interested in finding the statistical characteristics 
about the estimator of fractal dimension λ.

(1)

(2)
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2.0 Fundamental Concepts
The following theorems are the properties 

of power law distribution or fractal distribution 
(Clauset et al., 2009; Newman, 2005):

Theorem 1. Let X be fractal random variable with 
probability distribution given  ingiven in (1). Its 
moments are only well defined for m < λ-1. For m 
≥ λ-1, all moments diverge.

Proof.  Let X be distributed as power-law. Its 
moments are given by

It is well defined for m<λ-1. ∎

Theorem 2.  For λ>2, the mean is perfectly well 
defined and its variance is finite when λ>3.

Proof.  For power law distribution, the mean is

        This is defined when λ>2.

Since σ2 = E(x2)-μ2, then

or                                           It has finite variance 

when λ>3. ∎

Most identified power laws in nature have 
exponents such that the mean exists, but the 
variance does not.

Theorem 3. For λ>1, median always exists.

Proof.  For X distributed as power law, the median 
m is given by

For λ>1, median always exists and is defined. ∎

One way of determining the estimate of 
the exponent of a power-law distribution is by 
maximum likelihood estimation (Malik, 1970; 
Ramachandran & Tsokos, 2009; Bauke, 2007). 
Padua et al. (2015) derived the maximum likelihood 
estimator of λ.

Theorem 4. The maximum likelihood estimator of λ is
 

Where  θ = min{x1,x2,…,xn}
Proof.
Let   -------------- . The likelihood function is given by

It is easier to work when we take the natural 
logarithm of the likelihood function.

Then, we maximize the log-likelihood by taking the 
first derivative with respect to λ and equate to zero.

Solving for    :

3.0 Relationship of Fractal Distribution and 
Exponential Distribution

The distribution (1) is related to the more 
familiar exponential distribution as contained in 
the following theorem:

Theorem 5. Let X have the probability density 
(1). Let y =         , then Y has the exponential 
distribution:

g(y)= βe-βy, y > 0	 where β=λ-1.                   (4)

(3)

or
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Proof. Let y =                , then                  and

                             , is the Jacobian transformation. Thus,

Next, if Y =        is distributed as exponential 
with parameter β = λ - 1, then we need to know the 
distribution of X in the following theorem:

Theorem 6. Let Y=     . If Y is distributed as 
exponential with β=λ-1, then X has fractal 
distribution given in (1).
Proof. Let Z =             and                           Then,

Thus, X is fractal  with θ=1. ∎
From Theorem 5 and 6, we established the 

fundamental theorem of Fractal Statistics.

Theorem 7. Fundamental Theorem for Fractal 
Statistics
X is fractal if and only if log ---- has an exponential 
distribution with parameter β = λ - 1
Proof:
Proof follows from Theorem 5 and Theorem 6.∎

The fundamental theorem clearly connects 
the power-law distribution with an exponential 
distribution. The properties of random variables 
with exponential distribution are already well-
known (Feller, 1991; Ross, 2009; Temme, 2010). With 
this, we can establish the properties of random 
variables having power law distribution.

If Y is exponential, then we can also obtain the 
distribution of                 .

Theorem 8. Let y1, y2, …, yn be iid exp(β), then

(5)

distributed as Gamma           .

Proof.  The moment generating function of Yi is
                             , and so:

(6)

which is the moment generating function  of 
Gamma(α = n, βt)∎

4.0 Properties of Estimator of Fractal Dimension
Let y1, y2, …, yn be iid exp(β). The likelihood 

function is
(7)

Then the maximum likelihood estimator of β 
is given by

However, β is a biased estimator β. Regalado et 
al. (2018) derived the unbiased estimator for β and 
the estimator is given by

5.0 Properties of Estimator of Fractal 
Distribution

Using the estimator of λ in Theorem 4, we find 
the expected value of λ  as follows:

                                      , where 

Letting                                , we get 

Calculating E(s-1), where s is distributed as 
Gamma (Theorem 8), we have

The intergral                                                   ds

(9)

(8)
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is a gamma distribution with parameters α = n - 1 
and β > 0. Thus,

By (4),

Thus,

Here, E( λ) ≠ λ. λ is a biased estimator of λ. 
However, as n gets large, λ is a consistent estimator 
for λ.

Theorem 9. Let X be distributed as fractal. The 
unbiased  estimator λ  of λ is

Proof. By Theorem 4, logxi is distributed as 
exponential with β=λ-1. Thus, by (9)

Next, we find the bias by finding E( λ ).

Letting s=∑(i=1)logX_i , we get

By definition of bias, Bias = E ( λ ) - λ=0. Hence, λ 
is an unbiased estimator of λ. ∎

Theorem 10. Let x1, x2 ,…, xn be random variables 
distributed as fractal with parameter λ. The MLE of 
λ is  consistent estimator for λ.
Proof. The maximum likelihood estimator for λ 
is given in Theorem 4. Since the MLE is a biased 
estimator, we will show that

Since                                                             , then we 
need to show that

or we show that

(10)

(11)

Find Var( λ ):

Find E(s -2):

                                                             is a Gamma 

distribution with parameters α = n - 1 and β > 0

With β = λ - 1,

Thus,                                                         , where the 

coefficient                         < 1. As               ,

Next, we find the Bias( λ ):

As               , i.e.,                                . ∎

Theorem 11. λ has sufficient and complete 
statistic for λ. 
Proof.  Using (3), by Neyman-Fisher factorization 
theorem                             is a sufficient statistic for λ. 
Next, we showed completeness: 
Let g(t) be a function of statistic t such that 
E(g(t))= 0. Then
Since β > 0, then           ≠ 0. This implies that 
g(t)=0, ∀t. Therefore, T is a complete sufficient  
statistic.∎

(12)

J une
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Since λ a function of complete sufficient 
statistic, then we can say that it is uniformly 
minimum variance unbiased estimator (UMVUE) 
by Lehmann-Scheffe’s Theorem (Lehman & Casella, 
1998).

Theorem 12. Let x1, x2, …, xn be random variables 
distributed as fractal with parameter λ. The 
uniformly minimum variance unbiased estimator 
(UMVUE) of λ is

Proof. We prove the unbiasedness of the estimator 
by Theorem 9. By Theorem 10, λ is a function of 
complete and sufficient statistic. Now, we find the 
variance of  λ .

Since λ  is unbiased estimator, then  E(  λ) = λ. 
Find

Using (10) and (12),

(13)

With β = λ - 1,

Now, we obtained the Cramer-Rao Lower Bound 
for λ.The Fisher information is I(λ):

(14)

By (14) and (15),        . However, as                          
              ,                                       . By Lehmann-Scheffe's 
Theorem (Lehman & Casella, 1998), λ which is 
an unbiased estimator and function of sufficient 
and complete statistic has the minimum variance 
among unbiased estimators of λ. ∎

6.0 Conclusion
The characteristics of fractal data are described 

by fractal dimension. It is extremely important 
to have the best possible estimate of the fractal 
dimension. We have shown that estimator of λ is 
uniform minimum unbiased estimator (UMVUE). 
Having such an estimate leads to a better and 
more accurate statistical analysis and the basis in 
formulating the framework of statistical inference 
about the fractional dimension.
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