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Abstract
This paper further investigates the cyclic group (Zp )* with respect to the primitive roots
or generators & € (Z P )* . The simulation algorithm that determines the generators and the

number of generators, g of (Z » )* for a prime p is illustrated using Python programming.

#(¢(p))

The probability of getting a generator g of (Z » )* denoted by W , is generated for

prime p between 0 to 3000. The scatterplot is also shown that depicts the data points on the

probability ¢;¢((p))) of the group of units (Z ) )* with respect to the order p - 1 of (Z » )*for
p

prime p between 0 to 3000. The scatterplot results reveal that the probability of getting a
generator of the group of units (Z » )*is fluctuating within the probability range of 0.20 to
0.50, for prime p modulus from 3 to 3000. These findings suggest that the proportion of the
number of generators of the group of units modulo a prime of order p - 1, though fluctuating,

is bounded from 20% to 50% for prime p modulus from 3 to 3000.

Keywords: Group of units modulo a prime, (Zp )’j primitive roots or generators of (Z p)’ﬁ
simulation algorithm, probability of getting a generator g of (Zp )* .

Let Z, be the set of integers {0, 1, 2, .., n - 1} #(n)=n]1

1.0 Introduction
1—— |
p/n

p

under addition modulo #n. Then the set of all
The function ¢ is called the Euler Totient

elements a of Z, relatively prime ton, that is, ) )

function (Vinogradov, 2003).
gcd(a, n) =1, under multiplication modulo 7 .
N . The group (Zn) is cyclic if and only if n is
forms a group denoted by (Zn) . The order of this .
o equalto 1,2,4, p“or 2p* (Gauss, 1966) .When n =
group, ‘(Zn) ‘ ,is equal to ¢(n) where: N

p is prime, it follows that (Zn ) is a cyclic group of
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order ¢(p)=p—1.

A number g is a generator of a cyclic
group under multiplication modulo n, if for
each b in this group, there exists a k, such
that g* =b(modulo n), ged(h,n)=1. Such a
generator is called a primitive root modulo n.
The integer k is called the index of b to the base g
modulo n (sometimes referred to as the discrete
logarithm of b to the base g modulo n). When
n = p is a prime, the number of primitive roots
modulo n is ¢(s(p))=@(p —1), since a cyclic
group of p - 1 elements has ¢(p —1) generators
(Vinogradov, 2003). Knuth (1998) showed that:

ﬁ = O(log log n)

so that for large n, the generators are very
commonamong {2,3,...,n-1}.

This study endeavors to investigate further
the cyclic group (Zp *, and the elements of
(Zp )* specifically the generators gE(Zp)*
. The simulation algorithm that determines
the generators and the number of generators,
g of (Zp)* for a prime p is illustrated using
the Python programming. The distribution of
the resulting number of generators for each
prime p as modulus of the cyclic group (Zp )*
is presented using a scatterplot diagram. The
probability of getting a generator g of (Zp)*,

#¢(p))

#(p)
p between 1 and 3000.

denoted by is also generated for prime
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2.0 Prime Generators of (Zp )*

The group (Zp)* under modulo p is cyclic
with ¢(p)=p—1 elements. The number of
generators of this cyclic group, therefore is, at
most ¢(¢(p)) = ¢(p — 1)(Vinogradov, 2003).We
enumerated facts about the generators of (Zp )*
and had proven some of them. Wilson's Theorem
(Burton, 2007, p. 94) in number theory is an
important tool in deriving a result for the product

s
of generators g; of (Zp) for a prime p. It says:

Theorem 2.1 (Wilson) Let p be a prime number.
Then (p —1)=—1modulo p.

While Wilson’s result can be used as a primality
test, however, it is computationally intractable.
It remains an important theoretical result. Next,
if p is a prime, then (Zp )* has ¢(p)= p-1
elements. Since (Zp )* is cyclic, it has ¢(p—l)
generators.

Examples 2.2

(M Ifp=11, (ZH)* has ¢ (11) = 10 elements

and it has ¢(10)=g(4(11)) generators, that

is, ¢(10)= 4. The generators are {2,6,7,8}.

Note that 2:6-7-8=1(mod 11)

2-6=1(mod 11) and 7-8 = 56 = 1(mod 11).

@) 1fp=17, (Z1;) has ¢ (17) = 16 elements,

and it has #(#(17))=¢(16)=8 generators,

namely, {3, 5, 6, 7, 10, 11, 12, 14}. We can

since

re-group generators as follows {(3,6), (5,7),
8
(10,12), (11,14)}, so that ] g, =1(mod 17).

i=1
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The following result shows that the product
of generators &; of the group of units modulo
a prime p is congruent to 1 modulo p. Fermat’s
Theorem (Burton, 2007, p. 88) is used to prove this

result.

Theorem 2.3 (Fermat’s Theorem) Let p be a prime
and suppose that p does not divide a. Then,
a?™ =1(mod p).

ok

) has

Theorem 2.4 Let p be a prime. Then (Zp

¢(p —l) generators and
¢(p-1)

[1g; =1(mod p).

i=1
Proof: The first part follows from the fact that
(Zp) has ¢(p): p—1 elements. Since \Z, | is
cyclic then, it has @ (p - 1) generators. Next, take
a generator g . By Fermat’s Theorem (Theorem
2.3),

g/ ! =1(mod p)fork=12,--,4(p-1).

Foreachj, g; = g,fj since g, is agenerator. Now,

-1 -1) dj d, d dop-
H?z(llj )gj = H;P:(zl, )gk} =9 9 ---gk(b(p Y

¢(P-1)
dytdpt++dpp-1) Zj=1 d;
Kk =9 :

We can pair each term by their inverses and this

gives:

#(p-1)

-Hl gi=8, 2 =1(mod p). m
i=

Consider, next, the primefactorsof ¢ (p)where

p is a prime. Suppose that ¢(p) = 2p1p2 Ry /P

Let Q be the set of all primes less than or equal to

p. Q= {ql,qz,-“,qm } Then, it is clear that

{pl,pz,-~-,pk}gQg(Zp)*.

Villeta

117

Lemma 2.5 Let Q be the set of all primes less than
or equal to p and let P be the set of all prime
factors of ¢(p).Then P O (Zp )

Proof: Let p; € P, then p; /¢(p) and so
Pj < p- Moreover, gcd(pj,p): 1, hence,
p; € 0c (Zp )*. It follows that P < O.m

3.0 Analytic and Probabilistic Procedure in
Finding Generators of the Cyclic Group, (Zp )*

An element of the group of units
modulo a prime p, g e(Zp)* is a generator
if (Zp)*:{gk:keZ}. The computation
of generators of the cyclic group, (Zp)*
is indispensable in pseudorandom number
generators, error detecting codes, and in many
cryptosystems such as the following: Diffie-
Hellman key exchange protocol; ElGamal
and Massey-Omura public key ciphers; DSA;
ElGamal and Nyberg-Rueppel digital signature
(Adamski & Nowakowski, 2015).

The following result, Theorem 3.1, Adamski &
Nowakowski (2015), in algebraic number theory is
useful in the simulation algorithm which can be

used to obtain the generators of the cyclic group,

(Zp )*modulo aprimep.

Theorem 3.1 Let (Zp)*be the cyclic group of
the group of units modulo a prime p of order
¢(p)=p—1. let 2py-p2-"Pr be the
prime factorization of ¢(P). Then, g € (Zp )*is a

|k
generator of (Zp ) ifandonlyifforall i =1, 2, .., k
#(p)

g Pi s not congruent to 1 modulo p.
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Simulation Algorithm for Finding Generators of
the Group of Units Modulo a Prime

This section determines the simulation algorithm
that constructs a large prime p for the modulus of
(Zp )* and finds the generator and the number of
generators of (Z » )* Python programming was used

in the implementation of this algorithm.

Constructing the Large Prime p for the Modulus
e
of (Z p)
In constructing the large prime p for the modulus
of (Zp )* the Miller-Rabin Test (Rabin, 1980) for the

test of primality can be used.

The Miller-Rabin Test of Primality

Suppose n is prime with n > 2, hence n -
1 is even, which can be written as 2° e, where t
and e are positive integers (e is odd). For each
integer x, 1 < x < n, then either x° = %1(modn) or
x2'¢ =_I(modn) forany rwith 1<r <t—1.

The Miller-Rabin primality test is the
contrapositive of the preceding statement, that is,
in the event that we can find an x°is not congruent
2"e

to lor -1 (mod n) or x is not congruent to -1

mod (n),forall 1 <r <¢—1,then nisnot prime.

Finding the Generators g € (Zp )* fora Prime p

The following outlines the simulation algorithm
for finding the generators g € (Zp )* for a large
prime p as the modulus of (Zp )*:

1. Determine the number n if prime using the
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Miller-Rabin primality test. If n is prime, then
denote it by p;

2. Get the prime factors of p-1, that is,

#(p)=p-1=2p;-py-py

3. Initialize the list of generator;

4. lterate j from 1 to ¢(P)= p —1, the order or
size of (Z P )* ;

5. Inevery iteration j, initialize flag to a generator;

6. lterate i for all

#(p)=p-1;

the prime factors of

p-1

7. If j[i) = 1(mod p), then make a flag that
jis not a generator;

8. Outside the iteration of the prime factors,
provide a condition for checking the flag;

9. Ifflag is true, then j is a generator and append
to the list of generators of (Zp )*;

10.Count the number of generators of (Zp )* in
the list; and

11.Iterate steps 1 to 10 to generate all the
generators of (Zp )* for prime p between 1
and 3000.

4.0 Simulation Results for the Generators and
Number of Generators of the Group of Units
Modulo a Prime for Prime Modulus Between 0
to 3000

Figures 1, 2, 3, 4 and 5 depict the scatterplot
for the data points on the number of generators of
the group of units (Zp )* versus the corresponding

prime number modulus from 0 to 3000.
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Figure 1. Scatterplot for the number of generators
of \Z  [versusthe corresponding prime number
modulus between 0 and 100
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Figure 2. Scatterplot for the number of generators
of |z [ versus the corresponding prime number
modulus between 0 and 500
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Figure 3. Scatterplot for the number of generators
of \Z [versusthe corresponding prime number
modulus between 0 and 1000
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Figure 4. Scatterplot for the number of generators
Ik . .
of \Z | versus the corresponding prime number
modulus between 0 and 2000
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Figure 5. Scatterplot for the number of generators
of \Z » * versus the corresponding prime number
modulus between 0 and 3000

5.0The Probability, % Behavior of Finding

a Generator of the Group of Units Modulo a
Prime p for each Prime Modulus Between 0 to
3000

Figures 6, 7, 8, 9 and 10 depict the scatterplot
26(p)
#(p)

the group of units (Zp )*versus the corresponding

for the data points on the probability

order p-1 of (Zp )* for prime p between 2 to 3000.
The scatterplot results reveal that the probability
of getting a generator of the group of units (Zp )*
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is fluctuating within the probability range of 0.20
to 0.50, for prime p modulus from 3 to 3000.
These findings suggest that the proportion of
the number of generators of the group of units
modulo a prime of order p - 1, though fluctuating,
is bounded from 20% to 50% for prime p modulus

from 3 to 3000.
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Figure 6. Scatterplot for the probability M of
p
the group of units (Z ) )* versus the corresponding

order p-1 of \Z ) )* for prime p between 0 and 100
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Figure 7. Scatterplot for the probability M of
p
the group of units (Z » )* versus the corresponding

order p-1 of (Z ) )* for prime p between 0 and 500
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Figure 8. Scatterplot for the probability M of
p

the group of units (Z p )* versus the corresponding

order p-1 of (Z ) )* for prime p between 0 and 1000
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Figure 9. Scatterplot for the probability M of
p
the group of units (Z » )* versus the corresponding

order p-1 of (Z ) )* for prime p between 0 and 2000
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Figure 10. Scatterplot for the probability 2222 ¢(¢( )) of
p
the group of units (Z p ) versus the corresponding

order p-1 of (Z P )* for prime p between 0 and 3000
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6.0 Conclusion

This study investigated further the cyclic
group (Zp )* with respect to the primitive roots or
generators g € (Zp )* The simulation algorithm
that determines the generators and the number of
generators, g of the cyclic group (Zp )*, for prime
p is illustrated using the Python programming.
The probability of getting a generator g of (Zp )*
#(¢(p))

denoted by is generated for prime p

p
between 0 to 3000. The scatterplot results for
o¢(p)
(p)

with respect to the

the data points on the probability
the group of units (Zp)*
order p - 1 of (Zp )* reveal that the probability
of getting a generator of the group of units (Zp i
is fluctuating within the probability range of
0.20 to 0.50 for prime p modulus from 3 to 3000.
These findings suggest that the proportion of
the number of generators of the group of units
modulo a prime of order p - 1, though fluctuating,

is bounded from 20% to 50% for prime p modulus

from 3 to 3000.
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