On the Generators of the Group of Units Modulo a Prime and Its Analytic and Probabilistic Views

Ricky B. Villeta^{1*}, Elmer C. Castillano², and Roberto N. Padua³

1.2.3 University of Science and Technology of Southern Philippines, Cagayan de Oro City, Philippines

¹ https://orcid.org/0000-0001-8386-6798

² https://orcid.org/0000-0002-1230-8817

³ https://orcid.org/0000-0002-2054-0835

*Email Correspondence: rbvilleta35@usjr.edu.ph

Abstract

This paper further investigates the cyclic group $(Z_p)^*$ with respect to the primitive roots or generators $g \in (Z_p)^*$. The simulation algorithm that determines the generators and the number of generators, g of $(Z_p)^*$ for a prime p is illustrated using Python programming. The probability of getting a generator g of $(Z_p)^*$, denoted by $\frac{\phi(\phi(p))}{\phi(p)}$, is generated for prime p between 0 to 3000. The scatterplot is also shown that depicts the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ with respect to the order p - 1 of $(Z_p)^*$ for prime p between 0 to 3000. The scatterplot results reveal that the probability of getting a generator of the group of units $(Z_p)^*$ is fluctuating within the probability range of 0.20 to 0.50, for prime p modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order p - 1, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000.

Keywords: Group of units modulo a prime, $(Z_p)^*$, primitive roots or generators of $(Z_p)^*$, simulation algorithm, probability of getting a generator g of $(Z_p)^*$.

1.0 Introduction

Let Z_n be the set of integers $\{0, 1, 2, ..., n - 1\}$ under addition modulo n. Then the set of all elements a of Z_n relatively prime to n, that is, gcd(a, n) = 1, under multiplication modulo nforms a group denoted by $(Z_n)^*$. The order of this group, $|(Z_n)^*|$, is equal to $\phi(n)$ where:

$$\phi(n) = n \prod_{p/n} \left(1 - \frac{1}{p}\right).$$

The function ϕ is called the Euler Totient function (Vinogradov, 2003).

The group $(Z_n)^*$ is cyclic if and only if n is equal to 1, 2, 4, p^k or $2p^k$ (Gauss, 1966). When n = p is prime, it follows that $(Z_n)^*$ is a cyclic group of

order $\phi(p) = p - 1$.

A number g is a generator of a cyclic group under multiplication modulo n, if for each b in this group, there exists a k, such that $g^k \equiv b \pmod{n}$, gcd(b, n) = 1. Such a generator is called a primitive root modulo n. The integer k is called the index of b to the base g modulo n (sometimes referred to as the discrete logarithm of b to the base g modulo n). When n = p is a prime, the number of primitive roots modulo n is $\phi(\phi(p)) = \phi(p-1)$, since a cyclic group of p - 1 elements has $\phi(p-1)$ generators (Vinogradov, 2003). Knuth (1998) showed that:

$$\frac{n}{\phi(n-1)} = O(\log \log n)$$

so that for large n, the generators are very common among $\{2, 3, ..., n - 1\}$.

This study endeavors to investigate further the cyclic group $(Z_p)^*$, and the elements of $(Z_p)^*$, specifically the generators $g \in (Z_p)^*$. The simulation algorithm that determines the generators and the number of generators, g of $(Z_p)^*$ for a prime p is illustrated using the Python programming. The distribution of the resulting number of generators for each prime p as modulus of the cyclic group $(Z_p)^*$ is presented using a scatterplot diagram. The probability of getting a generator g of $(Z_p)^*$, denoted by $\frac{\phi(\phi(p))}{\phi(p)}$ is also generated for prime p between 1 and 3000.

2.0 Prime Generators of $(Z_p)^*$

The group $(Z_p)^*$ under modulo p is cyclic with $\phi(p) = p - 1$ elements. The number of generators of this cyclic group, therefore is, at most $\phi(\phi(p)) = \phi(p-1)$ (Vinogradov, 2003). We enumerated facts about the generators of $(Z_p)^*$ and had proven some of them. Wilson's Theorem (Burton, 2007, p. 94) in number theory is an important tool in deriving a result for the product of generators g_i of $(Z_p)^*$ for a prime p. It says:

Theorem 2.1 (Wilson) Let p be a prime number. Then $(p-1)! \equiv -1 \mod p$.

While Wilson's result can be used as a primality test, however, it is computationally intractable. It remains an important theoretical result. Next, if p is a prime, then $(Z_p)^*$ has $\phi(p) = p - 1$ elements. Since $(Z_p)^*$ is cyclic, it has $\phi(p-1)$ generators.

Examples 2.2

(1) If p = 11, $(Z_{11})^*$ has $\phi(11) = 10$ elements and it has $\phi(10) = \phi(\phi(11))$ generators, that is, $\phi(10) = 4$. The generators are {2,6,7,8}. Note that $2 \cdot 6 \cdot 7 \cdot 8 \equiv 1 \pmod{11}$ since $2 \cdot 6 \equiv 1 \pmod{11}$ and $7 \cdot 8 = 56 \equiv 1 \pmod{11}$. (2) If p = 17, $(Z_{17})^*$ has $\phi(17) = 16$ elements, and it has $\phi(\phi(17)) = \phi(16) = 8$ generators, namely, {3, 5, 6, 7, 10, 11, 12, 14}. We can re-group generators as follows {(3,6), (5,7), (10,12), (11,14)}, so that $\prod_{i=1}^{8} g_i \equiv 1 \pmod{17}$. The following result shows that the product of generators g_i of the group of units modulo a prime p is congruent to 1 modulo p. Fermat's Theorem (Burton, 2007, p. 88) is used to prove this result.

Theorem 2.3 (Fermat's Theorem) Let p be a prime and suppose that p does not divide a. Then, $a^{p-1} \equiv 1 \pmod{p}$.

Theorem 2.4 Let p be a prime. Then $(Z_p)^*$ has $\phi(p-1)$ generators and

$$\prod_{i=1}^{\phi(p-1)} g_i \equiv 1 \pmod{p}$$

Proof: The first part follows from the fact that $(Z_p)^*$ has $\phi(p) = p - 1$ elements. Since $(Z_p)^*$ is cyclic then, it has $\phi(p - 1)$ generators. Next, take a generator g_k . By Fermat's Theorem (Theorem 2.3), $g_k^{p-1} \equiv 1 \pmod{p}$ for $k = 1, 2, \dots, \phi(p-1)$.

For each j, $g_j = g_k^{d_j}$ since g_k is a generator. Now,

$$\begin{split} \Pi_{j=1}^{\phi(p-1)} g_j &= \Pi_{j=1}^{\phi(p-1)} g_k^{d_j} = g_k^{d_1} g_k^{d_2} \dots g_k^{d_{\phi(p-1)}} \\ &= g_k^{d_1 + d_2 + \dots + d_{\phi(p-1)}} = g_k^{\sum_{j=1}^{\phi(p-1)} d_j}. \end{split}$$

We can pair each term by their inverses and this gives:

$$\prod_{i=1}^{\phi(p-1)} g_i = g_k^{\frac{\phi(p-1)}{2}(\phi(p))} \equiv l \pmod{p}. \blacksquare$$

Consider, next, the prime factors of $\phi(p)$ where p is a prime. Suppose that $\phi(p) = 2p_1p_2\cdots p_k$. Let Q be the set of all primes less than or equal to $p, Q = \{q_1, q_2, \cdots, q_m\}$. Then, it is clear that $\{p_1, p_2, \cdots, p_k\} \subseteq Q \subseteq (Z_p)^*$. **Lemma 2.5** Let Q be the set of all primes less than or equal to p and let P be the set of all prime factors of $\phi(p)$. Then $P \subseteq Q \subseteq (Z_n)^*$.

Proof: Let $p_j \in P$, then $p_j / \phi(p)$ and so $p_j < p$. Moreover, $gcd(p_j, p) = 1$, hence, $p_j \in Q \subseteq (Z_p)^*$. It follows that $P \subseteq Q$.

3.0 Analytic and Probabilistic Procedure in Finding Generators of the Cyclic Group, $(Z_p)^*$

An element of the group of units modulo a prime $p, g \in (Z_p)^*$ is a generator if $(Z_p)^* = \{g^k : k \in Z\}$. The computation of generators of the cyclic group, $(Z_p)^*$ is indispensable in pseudorandom number generators, error detecting codes, and in many cryptosystems such as the following: Diffie-Hellman key exchange protocol; ElGamal and Massey-Omura public key ciphers; DSA; ElGamal and Nyberg-Rueppel digital signature (Adamski & Nowakowski, 2015).

The following result, Theorem 3.1, Adamski & Nowakowski (2015), in algebraic number theory is useful in the simulation algorithm which can be used to obtain the generators of the cyclic group, $(Z_p)^*$ modulo a prime p.

Theorem 3.1 Let $(Z_p)^*$ be the cyclic group of the group of units modulo a prime p of order $\phi(p) = p - 1$. Let $2p_1 \cdot p_2 \cdots p_k$ be the prime factorization of $\phi(p)$. Then, $g \in (Z_p)^*$ is a generator of $(Z_p)^*$ if and only if for all i = 1, 2, ..., k, $\frac{\phi(p)}{p}$

 g^{p_i} is not congruent to 1 modulo p.

Simulation Algorithm for Finding Generators of the Group of Units Modulo a Prime

This section determines the simulation algorithm that constructs a large prime p for the modulus of $(Z_p)^*$, and finds the generator and the number of generators of $(Z_p)^*$. Python programming was used in the implementation of this algorithm.

Constructing the Large Prime p for the Modulus of $(Z_p)^*$

In constructing the large prime p for the modulus of $(Z_p)^*$, the Miller-Rabin Test (Rabin, 1980) for the test of primality can be used.

The Miller-Rabin Test of Primality

Suppose *n* is prime with n > 2, hence n - 1 is even, which can be written as $2^t e$, where *t* and *e* are positive integers (*e* is odd). For each integer *x*, 1 < x < n, then either $x^e \equiv \pm 1 \pmod{n}$ or $x^{2^r e} \equiv -1 \pmod{n}$ for any *r* with $1 \le r \le t - 1$.

The Miller-Rabin primality test is the contrapositive of the preceding statement, that is, in the event that we can find an x^e is not congruent to 1 or -1 (mod n) or $x^{2^r e}$ is not congruent to -1 mod (n), for all $1 \le r \le t - 1$, then n is not prime.

Finding the Generators $g \in \left({Z}_p \right)^*$ for a Prime p

The following outlines the simulation algorithm for finding the generators $g \in (Z_p)^*$ for a large prime *p* as the modulus of $(Z_p)^*$:

1. Determine the number n if prime using the

Miller-Rabin primality test. If n is prime, then denote it by p;

- 2. Get the prime factors of p-1, that is, $\phi(p) = p 1 = 2p_1 \cdot p_2 \cdots p_k$;
- 3. Initialize the list of generator;
- 4. Iterate *j* from 1 to $\phi(p) = p 1$, the order or size of $(Z_p)^*$;
- 5. In every iteration *j*, initialize flag to a generator;
- 6. Iterate i for all the prime factors of $\phi(p) = p 1;$
- 7. If $j^{\left(\frac{p-1}{i}\right)} \equiv 1 \pmod{p}$, then make a flag that j is not a generator;
- Outside the iteration of the prime factors, provide a condition for checking the flag;
- 9. If flag is true, then *j* is a generator and append to the list of generators of $(Z_p)^*$;
- 10. Count the number of generators of $(Z_p)^*$ in the list; and
- 11. Iterate steps 1 to 10 to generate all the generators of $(Z_p)^*$, for prime p between 1 and 3000.

4.0 Simulation Results for the Generators and Number of Generators of the Group of Units Modulo a Prime for Prime Modulus Between 0 to 3000

Figures 1, 2, 3, 4 and 5 depict the scatterplot for the data points on the number of generators of the group of units $(Z_p)^*$ versus the corresponding prime number modulus from 0 to 3000.

Figure 1. Scatterplot for the number of generators of $(Z_p)^*$ versus the corresponding prime number modulus between 0 and 100

Figure 2. Scatterplot for the number of generators of $(Z_p)^*$ versus the corresponding prime number modulus between 0 and 500

Figure 3. Scatterplot for the number of generators of $(Z_p)^*$ versus the corresponding prime number modulus between 0 and 1000

Figure 4. Scatterplot for the number of generators of $(Z_p)^*$ versus the corresponding prime number modulus between 0 and 2000

Figure 5. Scatterplot for the number of generators of $(Z_p)^*$ versus the corresponding prime number modulus between 0 and 3000

5.0 The Probability, $\frac{\phi(\phi(p))}{\phi(p)}$ Behavior of Finding a Generator of the Group of Units Modulo a Prime *p* for each Prime Modulus Between 0 to 3000

Figures 6, 7, 8, 9 and 10 depict the scatterplot for the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order *p*-1 of $(Z_p)^*$ for prime *p* between 2 to 3000. The scatterplot results reveal that the probability of getting a generator of the group of units $(Z_p)^*$ is fluctuating within the probability range of 0.20 to 0.50, for prime p modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order p - 1, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000.

Figure 6. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order p-1 of $(Z_p)^*$ for prime p between 0 and 100

Figure 7. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order *p*-1 of $(Z_p)^*$ for prime *p* between 0 and 500

Figure 8. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order p-1 of $(Z_p)^*$ for prime p between 0 and 1000

Figure 9. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order *p*-1 of $(Z_p)^*$ for prime *p* between 0 and 2000

Figure 10. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ versus the corresponding order *p*-1 of $(Z_p)^*$ for prime *p* between 0 and 3000

6.0 Conclusion

This study investigated further the cyclic group $(Z_n)^*$ with respect to the primitive roots or generators $g \in (Z_p)^*$. The simulation algorithm that determines the generators and the number of generators, g of the cyclic group $(Z_p)^*$, for prime p is illustrated using the Python programming. The probability of getting a generator g of $(Z_n)^*$ denoted by $\frac{\phi(\phi(p))}{\phi(p)}$ is generated for prime p between 0 to 3000. The scatterplot results for the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $(Z_p)^*$ with respect to the order p - 1 of $(Z_p)^*$ reveal that the probability of getting a generator of the group of units $(Z_p)^*$ is fluctuating within the probability range of 0.20 to 0.50 for prime p modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order p - 1, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000.

References

- Adamski, T., & Nowakowski, W. (2015). The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups. Bulletin of the Polish Academy of Sciences, Technical Sciences, 63(4), 989-996. https://doi.org/10.1515/bpasts-2015-0112.
- Burton, D. M., (2007). *Elementary number theory* (6thed.). McGraw-Hill.

- Gauss, C. F. (1966). *Disquisitiones arithmeticae* (English ed). Springer-Verlag. https://doi. org/10.1007/978-1-4939-7560-0.
- Knuth, D. E. (1998). The art of computer programming: Vol. 2. Seminumerical algorithms (3rd ed.). Addison-Wesley.
- Rabin, M. O. (1980). Probabilistic algorithm for testing primality. *Journal of Number Theory*, *12*(1), 128-138. https://doi.org/10.1016/0022-314X(80)90084-0.
- Vinogradov, I. M. (2003). *Elements of number theory*. Dover Publications Inc. https://books.google. com.ph/books?id=xllfdGPM9t4C&printsec=fr ontcover#v=onepage&q&f=false