On the Generators of the Group of Units Modulo a Prime and Its Analytic and Probabilistic Views

Ricky B. Villeta ${ }^{1 *}$, Elmer C. Castillano², and Roberto N. Padua ${ }^{3}$
1,23. University of Science and Technology of Southern Philippines, Cagayan de Oro City, Philippines
${ }^{1}$ https://orcid.org/0000-0001-8386-6798
2 https://orcid.org/0000-0002-1230-8817
${ }^{3}$ https://orcid.org/0000-0002-2054-0835
*Email Correspondence: rbvilleta35@usjr.edu.ph

Abstract

This paper further investigates the cyclic group $\left(Z_{p}\right)^{*}$ with respect to the primitive roots or generators $g \in\left(Z_{p}\right)^{*}$. The simulation algorithm that determines the generators and the number of generators, g of $\left(Z_{p}\right)^{*}$ for a prime p is illustrated using Python programming. The probability of getting a generator g of $\left(Z_{p}\right)^{*}$, denoted by $\frac{\phi(\phi(p))}{\phi(p)}$, is generated for prime p between 0 to 3000 . The scatterplot is also shown that depicts the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ with respect to the order $p-1$ of $\left(Z_{p}\right)^{*}$ for prime p between 0 to 3000 . The scatterplot results reveal that the probability of getting a generator of the group of units $\left(Z_{p}\right)^{*}$ is fluctuating within the probability range of 0.20 to 0.50 , for prime p modulus from 3 to 3000 . These findings suggest that the proportion of the number of generators of the group of units modulo a prime of orderp-1, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000 .

Keywords: Group of units modulo a prime, $\left(Z_{p}\right)^{*}$, primitive roots or generators of $\left(Z_{p}\right)^{*}$, simulation algorithm, probability of getting a generatorg of $\left(Z_{p}\right)^{*}$.

1.0 Introduction

Let Z_{n} be the set of integers $\{0,1,2, \ldots, n-1\}$ under addition modulo n. Then the set of all elements a of Z_{n} relatively prime to n, that is, $\operatorname{gcd}(a, n)=1$, under multiplication modulo n forms a group denoted by $\left(Z_{n}\right)^{*}$. The order of this group, $\left|\left(Z_{n}\right)^{*}\right|$, is equal to $\phi(n)$ where:

$$
\phi(n)=n \prod_{p / n}\left(1-\frac{1}{p}\right)
$$

The function ϕ is called the Euler Totient function (Vinogradov, 2003).

The group $\left(Z_{n}\right)^{*}$ is cyclic if and only if n is equal to $1,2,4, p^{k}$ or $2 p^{k}$ (Gauss, 1966). When $n=$ p is prime, it follows that $\left(Z_{n}\right)^{*}$ is a cyclic group of
order $\phi(p)=p-1$.
A number g is a generator of a cyclic group under multiplication modulo n, if for each b in this group, there exists a k, such that $g^{k} \equiv b(\operatorname{modulo} n), \operatorname{gcd}(b, n)=1$. Such a generator is called a primitive root modulo n. The integer k is called the index of b to the base g modulo n (sometimes referred to as the discrete logarithm of b to the base g modulo n). When $n=p$ is a prime, the number of primitive roots modulo n is $\phi(\phi(p))=\phi(p-1)$, since a cyclic group of $p-1$ elements has $\phi(p-1)$ generators (Vinogradov, 2003). Knuth (1998) showed that:

$$
\frac{n}{\phi(n-1)}=O(\log \log n)
$$

so that for large n, the generators are very common among $\{2,3, \ldots, n-1\}$.

This study endeavors to investigate further the cyclic group $\left(Z_{p}\right)^{*}$, and the elements of $\left(Z_{p}\right)^{*}$, specifically the generators $g \in\left(Z_{p}\right)^{*}$. The simulation algorithm that determines the generators and the number of generators, g of $\left(Z_{p}\right)^{*}$ for a prime p is illustrated using the Python programming. The distribution of the resulting number of generators for each prime p as modulus of the cyclic group $\left(Z_{p}\right)^{*}$ is presented using a scatterplot diagram. The probability of getting a generator g of $\left(Z_{p}\right)^{*}$, denoted by $\frac{\phi(\phi(p))}{\phi(p)}$ is also generated for prime p between 1 and 3000 .

2.0 Prime Generators of $\left(Z_{p}\right)^{*}$

The group $\left(Z_{p}\right)^{*}$ under modulo p is cyclic with $\phi(p)=p-1$ elements. The number of generators of this cyclic group, therefore is, at most $\phi(\phi(p))=\phi(p-1)($ Vinogradov, 2003). We enumerated facts about the generators of $\left(Z_{p}\right)^{*}$ and had proven some of them. Wilson's Theorem (Burton, 2007, p. 94) in number theory is an important tool in deriving a result for the product of generators g_{i} of $\left(Z_{p}\right)^{*}$ for a prime p. It says:

Theorem 2.1 (Wilson) Let p be a prime number. Then $(p-1)!\equiv-1$ modulo p.

While Wilson's result can be used as a primality test, however, it is computationally intractable. It remains an important theoretical result. Next, if p is a prime, then $\left(Z_{p}\right)^{*}$ has $\phi(p)=p-1$ elements. Since $\left(Z_{p}\right)^{*}$ is cyclic, it has $\phi(p-1)$ generators.

Examples 2.2

(1) If $p=11,\left(Z_{11}\right)^{*}$ has $\phi(11)=10$ elements and it has $\phi(10)=\phi(\phi(11))$ generators, that is, $\phi(10)=4$. The generators are $\{2,6,7,8\}$. Note that $2 \cdot 6 \cdot 7 \cdot 8 \equiv 1(\bmod 11) \quad$ since $2 \cdot 6 \equiv 1(\bmod 11)$ and $7 \cdot 8=56 \equiv 1(\bmod 11)$.
(2) If $p=17,\left(Z_{17}\right)^{*}$ has $\phi(17)=16$ elements, and it has $\phi(\phi(17))=\phi(16)=8$ generators, namely, $\{3,5,6,7,10,11,12,14\}$. We can re-group generators as follows $\{(3,6),(5,7)$, $(10,12),(11,14)\}$, so that $\prod_{i=1}^{8} g_{i} \equiv 1(\bmod 17)$.

The following result shows that the product of generators g_{i} of the group of units modulo a prime p is congruent to 1 modulo p. Fermat's Theorem (Burton, 2007, p. 88) is used to prove this result.

Theorem 2.3 (Fermat's Theorem) Let p be a prime and suppose that p does not divide a. Then, $a^{p-1} \equiv 1(\bmod p)$.

Theorem 2.4 Let p be a prime. Then $\left(Z_{p}\right)^{*}$ has $\phi(p-1)$ generators and

$$
\stackrel{\phi(p-1)}{\prod_{i=1} g_{i}} \equiv 1(\bmod p) .
$$

Proof: The first part follows from the fact that $\left(Z_{p}\right)^{*}$ has $\phi(p)=p-1$ elements. Since $\left(Z_{p}\right)^{*}$ is cyclic then, it has $\phi(p-1)$ generators. Next, take a generator g_{k}. By Fermat's Theorem (Theorem 2.3),

$$
g_{k}^{p-1} \equiv 1(\bmod p) \text { for } k=1,2, \cdots, \phi(p-1) .
$$

For each $j, g_{j}=g_{k}^{d_{j}}$ since g_{k} is a generator. Now,

$$
\begin{aligned}
\prod_{j=1}^{\phi(p-1)} g_{j} & =\prod_{j=1}^{\phi(p-1)} g_{k}^{d_{j}}=g_{k}^{d_{1}} g_{k}^{d_{2}} \ldots g_{k}^{d_{\phi(p-1)}} \\
& =g_{k}^{d_{1}+d_{2}+\cdots+d_{\phi(p-1)}}=g_{k}^{\sum_{j=1}^{\phi(p-1)} d_{j}} .
\end{aligned}
$$

We can pair each term by their inverses and this gives:

$$
\prod_{i=1}^{\phi(p-1)} g_{i}=g_{k}^{\frac{\phi(p-1)}{2}(\phi(p))} \equiv 1(\bmod p)
$$

Consider, next, the primefactors of ϕ (p)where p is a prime. Suppose that $\phi(p)=2 p_{1} p_{2} \cdots p_{k}$. Let Q be the set of all primes less than or equal to $p, Q=\left\{q_{1}, q_{2}, \cdots, q_{m}\right\}$. Then, it is clear that $\left\{p_{1}, p_{2}, \cdots, p_{k}\right\} \subseteq Q \subseteq\left(Z_{p}\right)^{*}$.

Lemma 2.5 Let Q be the set of all primes less than or equal to p and let P be the set of all prime factors of $\phi(p)$. Then $P \subseteq Q \subseteq\left(Z_{p}\right)^{*}$.
Proof: Let $p_{j} \in P$, then $p_{j} / \phi(p)$ and so $p_{j}<p$. Moreover, $\operatorname{gcd}\left(p_{j}, p\right)=1$, hence, $p_{j} \in Q \subseteq\left(Z_{p}\right)^{*}$. It follows that $P \subseteq Q$.

3.0 Analytic and Probabilistic Procedure in

 Finding Generators of the Cyclic Group, $\left(Z_{p}\right)^{*}$An element of the group of units modulo a prime $p, g \in\left(Z_{p}\right)^{*}$ is a generator if $\left(Z_{p}\right)^{*}=\left\{g^{k}: k \in Z\right\}$. The computation of generators of the cyclic group, $\left(Z_{p}\right)^{*}$ is indispensable in pseudorandom number generators, error detecting codes, and in many cryptosystems such as the following: DiffieHellman key exchange protocol; ElGamal and Massey-Omura public key ciphers; DSA; ElGamal and Nyberg-Rueppel digital signature (Adamski \& Nowakowski, 2015).

The following result, Theorem 3.1, Adamski \& Nowakowski (2015), in algebraic number theory is useful in the simulation algorithm which can be used to obtain the generators of the cyclic group, $\left(Z_{p}\right)^{*}$ modulo a prime p.

Theorem 3.1 Let $\left(Z_{p}\right)^{*}$ be the cyclic group of the group of units modulo a prime p of order $\phi(p)=p-1$. Let $2 p_{1} \cdot p_{2} \cdots p_{k}$ be the prime factorization of $\phi(p)$. Then, $g \in\left(Z_{p}\right)^{*}$ is a generator of $\left(Z_{p}\right)^{*}$ if and only if for all $i=1,2, \ldots, k$, $g^{\frac{\phi(p)}{p_{i}}}$ is not congruent to 1 modulo p.

Simulation Algorithm for Finding Generators of

 the Group of Units Modulo a PrimeThis section determines the simulation algorithm that constructs a large prime p for the modulus of $\left(Z_{p}\right)^{*}$, and finds the generator and the number of generators of $\left(Z_{p}\right)^{*}$. Python programming was used in the implementation of this algorithm.

Constructing the Large Prime \boldsymbol{p} for the Modulus

 of $\left(Z_{p}\right)^{*}$In constructing the large prime p for the modulus of $\left(Z_{p}\right)^{*}$, the Miller-Rabin Test (Rabin, 1980) for the test of primality can be used.

The Miller-Rabin Test of Primality

Suppose n is prime with $n>2$, hence n 1 is even, which can be written as $2^{t} e$, where t and e are positive integers (e is odd). For each integer $x, 1<x<n$, then either $x^{e} \equiv \pm 1(\bmod n)$ or $x^{2^{r} e} \equiv-1(\bmod n)$ for any r with $1 \leq r \leq t-1$.

The Miller-Rabin primality test is the contrapositive of the preceding statement, that is, in the event that we can find an x^{e} is not congruent to 1 or $-1(\bmod n)$ or $x^{2^{r} e}$ is not congruent to -1 $\bmod (n)$, for all $1 \leq r \leq t-1$, then n is not prime.

Finding the Generators $g \in\left(Z_{p}\right)^{*}$ for a Prime p
The following outlines the simulation algorithm for finding the generators $g \in\left(Z_{p}\right)^{*}$ for a large prime p as the modulus of $\left(Z_{p}\right)^{*}$:

1. Determine the number n if prime using the

Miller-Rabin primality test. If n is prime, then denote it by p;
2. Get the prime factors of $p-1$, that is, $\phi(p)=p-1=2 p_{1} \cdot p_{2} \cdots p_{k} ;$
3. Initialize the list of generator;
4. Iterate j from 1 to $\phi(p)=p-1$, the order or size of $\left(Z_{p}\right)^{*}$;
5. In every iteration j, initialize flag to a generator;
6. Iterate i for all the prime factors of $\phi(p)=p-1 ;$
7. If $j^{\left(\frac{p-1}{i}\right)} \equiv 1(\bmod p)$, then make a flag that j is not a generator;
8. Outside the iteration of the prime factors, provide a condition for checking the flag;
9. If flag is true, then j is a generator and append to the list of generators of $\left(Z_{p}\right)^{*}$;
10. Count the number of generators of $\left(Z_{p}\right)^{*}$ in the list; and
11.Iterate steps 1 to 10 to generate all the generators of $\left(Z_{p}\right)^{*}$, for prime p between 1 and 3000 .
4.0 Simulation Results for the Generators and Number of Generators of the Group of Units Modulo a Prime for Prime Modulus Between 0 to 3000

Figures 1, 2, 3, 4 and 5 depict the scatterplot for the data points on the number of generators of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus from 0 to 3000.

Figure 1. Scatterplot for the number of generators of $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus between 0 and 100

Figure 2. Scatterplot for the number of generators of $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus between 0 and 500

Figure 3. Scatterplot for the number of generators of $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus between 0 and 1000

Figure 4. Scatterplot for the number of generators of $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus between 0 and 2000

Figure 5. Scatterplot for the number of generators of $\left(Z_{p}\right)^{*}$ versus the corresponding prime number modulus between 0 and 3000
5.0 The Probability, $\frac{\phi(\phi(p))}{\phi(p)}$ Behavior of Finding a Generator of the Group of Units Modulo a Prime \boldsymbol{p} for each Prime Modulus Between 0 to 3000

Figures 6, 7, 8, 9 and 10 depict the scatterplot for the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order $p-1$ of $\left(Z_{p}\right)^{*}$ for prime p between 2 to 3000 The scatterplot results reveal that the probability of getting a generator of the group of units $\left(Z_{p}\right)^{*}$
is fluctuating within the probability range of 0.20 to 0.50 , for prime p modulus from 3 to 3000 . These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order $p-1$, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000 .

Figure 6. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order p-1 of $\left(Z_{p}\right)^{*}$ for prime p between 0 and 100

Figure 7. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order p-1 of $\left(Z_{p}\right)^{*}$ for prime p between 0 and 500
 Figure 8. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order p-1 of $\left(Z_{p}\right)^{*}$ for prime p between 0 and 1000

Figure 9. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order p-1 of $\left(Z_{p}\right)^{*}$ for prime p between 0 and 2000

Figure 10. Scatterplot for the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ versus the corresponding order $p-1$ of $\left(Z_{p}\right)^{*}$ for prime p between 0 and 3000

6.0 Conclusion

This study investigated further the cyclic group $\left(Z_{p}\right)^{*}$ with respect to the primitive roots or generators $g \in\left(Z_{p}\right)^{*}$. The simulation algorithm that determines the generators and the number of generators, g of the cyclic group $\left(Z_{p}\right)^{*}$, for prime p is illustrated using the Python programming. The probability of getting a generator g of $\left(Z_{p}\right)^{*}$ denoted by $\frac{\phi(\phi(p))}{\phi(p)}$ is generated for prime p between 0 to 3000. The scatterplot results for the data points on the probability $\frac{\phi(\phi(p))}{\phi(p)}$ of the group of units $\left(Z_{p}\right)^{*}$ with respect to the order $p-1$ of $\left(Z_{p}\right)^{*}$ reveal that the probability of getting a generator of the group of units $\left(Z_{p}\right)^{*}$ is fluctuating within the probability range of 0.20 to 0.50 for prime p modulus from 3 to 3000 . These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order $p-1$, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000 .

References

Adamski, T., \& Nowakowski, W. (2015). The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups. Bulletin of the Polish Academy of Sciences,Technical Sciences, 63(4), 989-996. https://doi.org/10.1515/bpasts-2015-0112.

Burton, D. M., (2007). Elementary number theory (6thed.). McGraw-Hill.

Gauss, C. F. (1966). Disquisitiones arithmeticae (English ed). Springer-Verlag. https://doi. org/10.1007/978-1-4939-7560-0.

Knuth, D.E.(1998).Theartofcomputerprogramming: Vol. 2. Seminumerical algorithms (3rd ed.). Addison-Wesley.

Rabin, M. O. (1980). Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1), 128-138. https://doi.org/10.1016/0022-314X(80)90084-0.

Vinogradov, I. M. (2003). Elements of number theory. Dover Publications Inc. https://books.google. com.ph/books?id=xllfdGPM9t4C\&printsec=fr ontcover\#v=onepage\&q\&f=false

