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Abstract

This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean 
theorem. The purpose of this paper is threefold. First, to show a new, direct method of 
trisecting the 900 angle using unmarked straight edge and compass; secondly, to show 
Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, 
direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem 
from this trisection of the 900 angle. This paper employs the direct dissection method. It 
concludes by presenting four points: a) the concept of trisectability as distinct from concept 
of constructability; b) the trisection of the 900 angle as really a new, different method; c) 
Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 
900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 
900 angle.
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1.0 Introduction
In the history of mathematics, three famous 

problems in elementary geometry have occupied 
mathematicians since ancient Greek period. These 
are the quadrature of the circle, the duplication of 
the cube, and the trisection of an arbitrary angle. 
The Greeks set the rules for solving these problems. 
Only two tools are permitted to be used: unmarked 
straight edge and compass.

This paper focuses only on angle trisection. In 
layman’s term, the problem of angle trisection may 
be stated as follows. To trisect a given arbitrary 
angle means to divide it into three equal angles. 

This problem appears to be just simple at first 
glance, yet, in reality the general mathematical 
proof of whether or not angle trisection is possible 
has eluded mathematicians for centuries. In 
1837 however, the French mathematician, Pierre 
Wantzel, finally gave the proof that angle trisection 
is generally impossible (Bailey, 2018).

The general proof of the impossibility of angle 
trisection means that there is no general method 
for trisecting just any given arbitrary angle. (We 
take note of the words general and any.) In spite of 
this general proof however, some angles can still 
be trisected using only the tools being permitted: 
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the unmarked straight edge and compass (Yates, 
1971). The 450 and 900 angles for example, are 
known to be trisectable.

The 900 angle can be trisected using some 
methods. In this paper, we will show a  different 
method for trisecting this angle. As far as the 
literature of this problem shows, this method is 
hitherto unknown in the history of this problem. 
This paper will first deal with this new method of 
trisecting the 900 angle.

Moreover, two new mathematical facts 
emerge from this new method. First, an inherent 
mathematical connection between Bhaskara’s first 
proof of the Pythagorean theorem (c2 = a2 + b2) 
and this trisection of the 900 angle exists. Bhaskara, 
an Indian mathematician in the 12th century A.D, 
gave geometrical proofs of the Pythagorean 
theorem (Loomis, 1968). His first proof is naturally 
embedded in this new method of trisecting the 900 
angle; the proof would just naturally emerge from 
this trisection. Secondly, the Pythagorean theorem 
can be derived from this new method of trisecting 
the 900 angle.

With these new findings related to angle 
trisection, we are going to show the following 
three main points. 

First, this paper will show the trisectability of 
the 900 angle into three equal angles using a new, 
direct method with the two tools being permitted: 
the unmarked straight edge and compass.

Secondly, this paper will show Bhaskara’s first 
proof as naturally embedded in this trisection of 
the 900 angle. It will also show as well the inherent 
geometrical connection between Bhaskara’s first 
proof and this new method of trisecting the 900 
angle. Thus, this paper briefly presents Bhaskara’s 
first proof.

Lastly, on the basis of Bhaskara’s first proof, 

the Pythagorean theorem may be said as a 
natural consequence in this new method of 
trisecting the 900 angle. However, this paper has 
to mathematically show the derivation of the 
Pythagorean theorem from this new method.

2.0 Methodology
This paper employs the direct dissection 

method. Here, the 900 angle itself is directly 
geometrically trisected or divided into three equal 
parts using the two tools, unmarked straight edge 
and compass. The two tools the ancient Greek 
mathematics permits for solving this problem 
would naturally lend more to the use of the 
direct dissection method. (This paper, however, 
would not touch anything of what may be called 
indirect method: i.e., the use of algebraic and/
or trigonometric formulations in solving this 
geometrical problem.)

3.0 Results and Discussion
Constructibility and Trisectability Distinguished

This section distinguishes the words 
constructibility  and trisectability. The importance 
of this distinction is that the latter illustrates the 
kind of method used in this paper.

In his article “Ram’s Theorem for Trisection” 
Bhat (2019) says,

“it should also be noted that the proof 
of impossibility considers primarily the 
constructability of the angle of value 
equivalent to one-third of the given value 
and not the trisectability of the given 
angle directly.”

The quoted passage differentiates the 
meanings of the words constructability and 
trisectability. 
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Constructibility, on the one hand, seems to 
refer to the idea whether or not an angle one-third 
of a given angle is constructible. Here, the problem 
of angle trisection is set first into an algebraic and/
or trigonometric equation: x3 - 3x - 2a = 0, known as 
the trisection equation. This equation contains the 
following question: “Is it possible for all values of a, 
to find by a straightedge and compasses construction 
a root x of the Trisection Equation?” 

This paper would not deal with the trisection 
equation in itself here; it does not deal with the 
finding of the root x of this equation. Instead, this 
paper would merely point out the fact that the 
trisection equation is a sort of an indirect method 
or proof of proving the possibility or impossibility 
of angle trisection in general. It is indirect in the 
sense the problem of angle trisection is set first 
into algebraic formulation. In other words, it goes 
to algebra to see whether angle trisection in 
geometry is possible or not. 

The concept of indirect method or proof can 
be illustrated using Archimedes’ method shown 
in Figure 1 (Heilbron, 2001). It does not start by 
algebraic formulation, yet it remains to be an 
indirect proof. The reason is as follows:

Figure 1. Archimedes’ Method in Trisecting an 
Arbitrary Angle

In Fig. 1, the given arbitrary angle is ∠BOA. 
Archimedes constructed ∠CDO|∠CDO = 1/3∠BOA; 
Archimedes trisected the given angle that way. 
This method could still be considered indirect. 
The trisection of the given arbitrary ∠BOA is done 
via the construction of ∠CDO; the given arbitrary 
angle ∠BOA itself is not directly trisected.  Thus, in 
this case, to say that an angle (1/3 of a given angle) 
is constructible is to say that an angle (one that is 
other than the given angle) can be constructed 
such as found in Archimedes’ method.

Trisectability, on the other hand, refers to the 
direct trisection of a given angle itself (as shown in 
the quoted passage above). A given angle itself is  
to be directly divided into three equal parts using 
unmarked straight edge and compass. To say that 
an angle is trisectable is to say that a given arbitrary 
angle is divisible into three equal angles directly 
geometrically.

Thus, the given arbitrary ∠BOA in Figure 1 can 
be trisected directly geometrically by drawing two 
lines from point O, dividing ∠BOA into three equal 
angles. This is direct method where the trisection is 
done directly on the given angle itself. No algebraic 
formulation of the problem is done.

The distinction between the words 
constructible and trisectable is now made clear. 
Again, this distinction is important here; for it 
illustrates the kind of method used in this paper. 
This paper uses the direct method or proof, or the 
concept of trisectability in the exposition of the 
subject matter.

Trisection of the 900 Angle
This section will show the trisection 

(trisectability) of the 900 angle, using the direct 
dissection method, with the unmarked straight 
edge and compass.
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In Figure 2, let point D be the pivot point for 
the compass. We set the compass equal to the 
length of segment, DF. With point D as the pivot 
point, we make a circular arc from F to O, i.e., FO 
(the one below the diagonal line FO in Figure 
2), that intersects with the DT. (Henceforth, the 
symbol on top of the two letters is used as symbol 
for arc.) We designate this point of intersection 
with letter H. We draw two lines; one from O to H 
and another from D to H. In this case, point H is the 
vertex of ∆DHO.

Figure 2. Intersection, H, of the FO (below diagonal 
line FO) and the DT

Next, in Figure 3, we do the same thing, but 
this time we let point T as the pivot point. We set 
the compass equal to the length of segment, TO. 
With point T as the pivot point, we make a circular 
arc from F to O, i.e., FO (see above the diagonal line 
FO), that intersects with the DT. We designate this 
point of intersection with letter L. We draw two 
lines; one from T to L and another from O to L. In 
this case, point L is the vertex of ∆OLT.

Figure 3. Intersection L of the FO (above diagonal 
line FO) and the DT

Now, from Figures 2 and 3, we have the 
following proposition:

Proposition 1
∆DHO = ∆OLT = equilateral triangle       (1)

Proof:
In Figure 4, we let circle O, with its center at 

O, be the given circle. Its radius, r=OT=OD. We 
draw another circle having the same radius r, 
and let it be circle D with its center at D. Circles 
O and D intersect at point H, exactly midway 
between, or equidistant from the lines FD and 
TO. The point of intersection is located midway 
between points F and T, or is ½(FT) or ½(r) – 
although this point does not lie on the line, FT. 
It is because FT = DO = r.

Point H is on circle O and circle D. This point 
is equidistant from the centers of both circle 
O and circle D, respectively. With DH, OH, DO, 
and r we have…

DH = OH = DO = r                                       (2)
Therefore,

∆DHO = equilateral triangle                          (3)
(see Figure 4 below)

J une
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Figure 4. Circle O and Circle D with ∆DHO

In Figure 5, we still use the same circle O. We 
draw another circle T, with its center at T. They 
intersect at point L. By the same argument as in 
Figure 4, point L is equidistant to the centers of 
both circle O and circle T. With OL, TL, TO, and r 
we have…

OL = TL = TO = r                                         (4)
Therefore, 

∆OLT = equilateral triangle                          (5)
(see Figure 5 below)

Thus, proposition 1 is proven.

Figure 5. Circle O and Circle T with ∆OLT

Figure 6 shows the combination of the three 
circles, O, D, and T.

Figure 6. Circle O, Circle D, and Circle T

In Figure 7, ∆DHO and ∆OLT are combined 
with the circles D & T being removed.

Figure 7. ∆DHO & ∆OLT

Now, ∆DHO = ∆OLT; they are proven to be 
equilateral triangles. Therefore,

∠HDO = ∠DHO = ∠DOH = 600                        (6)
And,
∠LOT = ∠OLT = ∠OTL = 600                          (7)

2021 De  Ca t a l i n a
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It follows that
∠DOL = ∠LOH = ∠HOT = 300                        (8)
This means that
∠DOL + ∠LOH + ∠HOT =∠DOT=900         (9)
Thus, the right angle ∠DOT is trisected in this 

way, using only the tools, unmarked straight edge 
and compass.

The Embedded Bhaskara’s First Proof of the 
Pythagorean Theorem

The Graphical Representation of Bhaskara’s First 
Proof

This subsection presents the graphical 
representation of Bhaskara’s first proof of the 
Pythagorean theorem. Bhaskara (1114–1185) 
offered two proofs of the Pythagorean theorem 
(Head, n.d.; Bogomolny, 2016). The image shown in 
Figure 8 is one of his two proofs.

Figure 8. Bhaskara’s First Proof of the Pythagorean 
Theorem (http://jwilson.coe.uga.edu/Pythagorean.html, 

accessed 9-16-2019)

Bhaskara’s First Proof as Embedded in the Trisection 
of the 900 Angle

This subsection will show Bhaskara’s first proof 
of the Pythagorean theorem as naturally embedded 
in this new, direct geometrical trisection of the 900 

angle. (The procedure in constructing Bhaskara’s 

first proof, using unmarked straight edge and 
compass is shown in section 3.2 above.)

Figure 9 shows the construction of four circles 
in which Bhaskara’s first proof is embedded.

Figure 9. Bhaskara’s First Proof Embedded in the 
Four Circles

In Figure 9, there are four circles: O, T, F, and 
D. Let us focus on the quarter square   DOTF and 
the four circles in the first quadrant of the Cartesian 
coordinates x & y. 

First is circle O (colored black). DT (colored 
black) connects points D and T. DT (black) also 
intersects with FO (red). We designate their point 
of intersection with lower case letter h. We draw 
the lines, hD and hO. With line OD, we have the 
equilateral ∆DhO.

Second is circle T (colored green). FO (colored 
green) connects points F and O. FO (green) also 
intersects with DT (black). We designate their 
point of intersection with lower case letter l. We 
draw the lines, lO and lT. With line OT, we have the 
equilateral ∆TlO.

Third is circle D (colored red). FO (colored red) 
connects points F and O. FO (colored red) also 
intersects with DT (colored blue). We designate 
their point of intersection with lower case letter v. 

J une
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We draw the lines vD and vF. With line OD, we have 
the equilateral ∆DvF.

Fourth is circle F (colored blue). DT (colored 
blue) connects points D and T. DT (colored blue) 
also intersects with FO (colored green). We 
designate their point of intersection with lower 
case letter s. We draw lines sT and sF. With line FT, 
we have the equilateral ∆FsT.

Now, ∆DhO, ∆TlO, ∆DvF, and ∆FsT are 
equilateral triangles. It follows that…

∆DhO = ∆TlO = ∆DvF = ∆FsT                     (10)
In Figure 10, we remove the three circles, D, F, 

and T, leaving only circle O (colored black).

Figure 10. Circle O with the Four Equilateral 
Triangles

The intersection of the equilateral triangles, 
∆DhO, ∆TlO, ∆DvF, and ∆FsT in Figure 10 looks like 
a star. We now remove circle O, as shown in Figure 
11.

Bhaskara’s first proof of the Pythagorean 
theorem is not yet clear and distinct in Figure 11. 
The legs of the four equilateral triangles cross each 
other. 

Figure 11. The Four Equilateral Triangles

Figure 12. Right Legs of the Four Equilateral 
Triangles Removed

The right legs Oh, Tl, Fs, and Dv are removed 
in Figure 12. The four triangles ∆OCD, ∆TEO, ∆FAT, 
and ∆DBF are now clear. The four capital letters A, 
B, C & E are used to designate the angles: ∠FAT, 
∠DBF, ∠OCD, and ∠TEO. At this point, Bhaskara’s 
first proof emerges.

We now remove either the right leg or left leg 
of each of the four equilateral triangles. See Figures 
12 and 13.

2021 De  Ca t a l i n a
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Figure 13. Left Legs of the Four Equilateral Triangles 
Removed

The left legs Ol, Dh, Fv, and Ts are removed 
in Figure 13. The four triangles ∆OGT, ∆TKF, ∆FJD, 
and ∆DIO are now clear. The four capital letters G, 
K, J, and I are used to designate the angles: ∠OGT, 
∠DIO, ∠FJD, and ∠TKF. Similarly, at this point, 
Bhaskara’s first proof emerges.

What remains to be shown now is whether 
∠FAT, ∠DBF, ∠OCD,  ∠TEO (in Figure 12), ∠OGT, 
∠DIO, ∠FJD, and ∠TKF (in Figure 13) are all right 
angles.

Theorem
Angles A, B, C, E, G, I, J, & K are all right angles.

Proof
In Figure 12,
∵∠sTO =∠lOD =∠hDF =∠vFT= 30⁰               (11)

And,
∵∠FTA =∠TOE =∠ODC =∠DFB= 600         (12)
∴∠FAT =∠DBF =∠OCD =∠TEO= 900         (13)

In Figure 13,
∵∠sFD =∠lTF =∠hOT =∠vDO= 300               (14)

And
∵∠FDJ =∠TFK =∠OTG =∠DOI= 60⁰              (15)
∴∠OGT =∠DIO =∠FJD =∠TKF= 90⁰             (16)

Figures 12 and 13 show Bhaskara’s first proof of 

the Pythagorean theorem as naturally embedded. 
Figures 12 and 13, trimmed and the lowercase 
letters inside the square removed are shown in 
Figures 14 and 15 below, respectively.

Figure 14. Bhaskara’s First Proof with ∠FAT, ∠DBF, 
∠OCD, ∠TEO

Figure 15. Bhaskara’s First Proof with ∠OGT, ∠DIO, 
∠FJD, ∠TKF

Bhaskara’s first proof of the Pythagorean 
theorem is now clear as indicated by the four 
right triangles and the small square. The four right 

J une



9

triangles ∆OCD, ∆TEO, ∆FAT, ∆DBF and the small 
square  ECBA have now clearly emerged in Figure 
14. Similarly, the right triangles ∆OGT, ∆TKF, ∆FJD,  
∆DIO and the small square  IJKG have now clearly 
emerged in Figure 15.

Derivation of the Pythagorean Theorem 
This section will show the derivation of the 

Pythagorean theorem (Zimba, 2009) using this 
new, direct trisection of the 900 angle together 
with Bhaskara’s first proof.

In Figure 16, we let c = FT, a = FA, and b = TA.

Figure 16. ∠FAT with Sides a, b, & c

Then, we have
a = c Sin60 =                                                   (17)
b = c Cos60 = c 1/2  (here, b = ½ r)          (18)

Let As be the area of the whole  ∆DOTF in Figure 
16. Then, we have,

A� = c2                                                                (19)
Let At be the area of the four triangles. Then, we 
have

At = ∆OCD + ∆TEO + ∆FAT + ∆DBF        (20)
(We may use only one triangle and multiply it by 
4, since  ∆FAT = ∆DBF = ∆OCD = ∆TEO)
Then, we have

At  = 4 (½ ab)                                                 (21)
At  = 2ab                                                           (22)

Substituting 17 and 18 on 22, we have
At = 2 (        ) (c 1/2)                                         (23)

Multiplying (         ) (c 1/2), we have

At= 2 c² √3/4                                                     (24)

At= c² √3/2                                                      (25)

Since       = Sin60, then we have

At= c² Sin60                                                      (26)
Let Ass be the area of the small square     CEAB in 
Figure 16. Then, we have

Ass = (a – b)²                                                   (27)
Substituting 17 and 18 on 27, we have

Since     = Sin60, then we have

Ass= c2 (1-Sin60)                                           (34)

The Area of the bigger square, As = c2, is equal to 
the total area, Atotal , of the four triangles, 2ab, plus 
the small square, (a – b)2. Thus, we have

Atotal = As = At + Ass                                                                       (35)
Since As = c2, then we have

c2 = 2ab + (a – b)2                                                                      (36)
Substituting 17 and 18 on 36, we have

2021 De  Ca t a l i n a
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Or,
c2 = a2 + b2                                                                                               (41)

Substituting 17 and 18 on 41, we have

Therefore,

c2 = a2 + b2                                                                                               (47)                                                                  

Thus, the Pythagorean theorem is derived from 
this new, direct trisection of the 900 angle together 
with Bhaskara’s first proof of the Pythagorean 
theorem.

4.0 Conclusion
There are four important points to be 

mentioned here. 
Firstly, we conclude that the trisection 

of an angle is not totally impossible in terms 
of the concept of trisectability (though in 
terms of the concept of constructability, angle 
trisection is said to be generally impossible). The 
important distinction between trisectability and 
constructability is made clear.

Secondly, although it is not new that the 
900 angle is trisectable, we conclude that it is 
geometrically trisectable using a new hitherto 
unknown way or method by means of the tools 

being permitted: the unmarked straight edge and 
compass.

Thirdly, we conclude that Bhaskara’s first 
proof of the Pythagorean theorem is being truly 
embedded in this new, direct trisection of the 900 

angle using unmarked straight edge and compass. 
Lastly, we conclude that the Pythagorean 

theorem can be derived from this new, direct 
trisection of the 900 angle in which Bhaskara’s first 
proof is embedded.

Some of the facts presented in this short paper 
are something new. The method of trisecting the 
900 angle shown in Figure 9 is entirely new, as far as 
the literature of this antique problem in elementary 
geometry shows.
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