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Abstract

It is important to realize at the beginning of a statistical analysis whether the data 
are from a monofractal or multifractal distribution because the methods of analysis are 
different for each. In seismic sequence analysis, for instance, the monofractal method uses 
the R/S and DFA (range-scale and detrended fluctuation analysis, respectively) techniques 
while the multifractal formalism uses the partition function technique (PFT) and the 
Legendre spectra outputting three parameters: maximum  of the spectrum, asymmetry 
B and width W of the curve (Lapenna et al. (2003)). In this paper, we introduce a simple test 
of mono or multifractality of data sets. The test is based on  fitting a power-law distribution 
to a random sample obtained from some unknown distribution G(.). For each quantile, a 
fractal dimension  is obtained. This corresponds to the Legendre spectra or multifractal 
spectra. A regression function is fitted to the points (tk, ) and the slope b of this line 
is tested. If b = 0, then the observations are deduced to have come from a monofractal 
distribution f(x). The paper proposed a test for monofractality which, in effect, also tests 
for multifractality or non-fractality of a set of observations. For monofractal observations, 
the proposed new multifractal spectral analysis revealed a single point (singularity at a 
point) while for multifractal observations, a single-humped continuous quadratic function 
is observed. The parameters of the quadratic function are interpreted as the measure of 
asymmetry (B), ruggedness (C) and width (W). The new proposed multifractal spectrum 
function is easier to calculate and is consistent with the more complicated Legendre 
spectrum proposed in the literature.
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1.0  Introduction
Telesca, Lapenna and Macchiato (2003) 

analyzed the earthquake sequences from 1986 to 
2001 in three different seismic zones in Italy by 
means of monofractal and multifractal methods 
and demonstrated that the multifractal analysis has 
given superior quantitative information about the 
“complexity” of the seismic series. The use of fractal 
and multifractal statistical tools in seismic analysis 
was pioneered by Smalley et al. (1987); Kagan 

(1994) who reviewed experimental evidences for 
earthquake scale invariance. In earlier works, a 
single Hurst exponent (fractal dimension )  was 
used in conjunction with modeling seismic patterns 
using the Fano factor and the Allan factor (Telesca, 
Lapenna and Macchiato(2001)). While one scaling 
exponent can completely describe a monofractal, 
not all irregular data are homogeneous in the 
sense that they have the same scaling properties. 
The need for more than one scaling exponent to 
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describe the scaling process uniquely may require 
more than one exponent (hence, multifractal). 
Multifractals are intrinsically more complex and 
inhomogeneous than monofractals; they can be 
decomposed into many – possibly infinite – subsets 
characterized by different scaling exponents 
(Stanley et al. 1999). 

 Mathematically, a monofractal distribution 
is described by the power – law probability density:

(1)… 

with fractal dimension ( ). By abuse 
of notation, we shall refer to  as the fractal 
dimension rather than ( ). The fractal 
dimension  describes the “space-filling” property 
of the observations relative to a scale. Thus, in 
a mono fractal system, the self – similarity of the 
objects is repeated at various scales with the same 
space – filling property (Padua, 2013).

On the other hand, multifractal distributions 
are a mixture of monofractal distributions with 
dimensions . Following Tukey’s 
model (1972), we write:

(2)…

with  . Theoretically, 
 and  is a sequence of real 

numbers between 0 or 1 such that . 
Given a random sample  from 

f(x), we are asked to determine whether they 
came from (1) or from (2). Since the data are highly 
irregular and heterogeneous, the usual Fisher’s 
linear discriminant analysis (FLD) or quadratic 
discriminant analysis will not work here (Johnson 
and Wichern, 2000).

It is important to realize at the beginning 
of a statistical analysis whether the data are 

from a monofractal or multifractal distribution 
because the methods of analysis are different for 
each. In seismic sequence analysis, for instance, 
the monofractal method uses the R/S and DFA 
(range-scale and detrended fluctuation analysis, 
respectively) techniques while the multifractal 
formalism uses the partition function technique 
(PFT) and the Legendre spectra outputting three 
parameters: maximum  of the spectrum, 
asymmetry B and width W of the curve (Lapenna 
et al. (2003)).

In this paper, we introduce a simple test of 
mono or multifractality of data sets.

2.0  Fractal Statistical Formalisms
A random sample  is said to 

obey a fractal distribution if the probability density 
function describing their distribution obeys:

(3)  ,

It is shown in Padua (2013) that the maximum 
likelihood estimators of  and  are respectively.

(4) 

(5) .

The maximum-likelihood estimator of  is 
unbiased for  and is a function of a complete, 
sufficient statistic. It follows from the Lehmann 
and Scheffe’s theorem that it is also the unique 
minimum variance unbiased estimator of 
(UMVUE).

We note that both  and 
  may not exist for fractal 

observations so that  and  are meaningless 
estimators of  and , respectively. Consequently, 
the law of large numbers  and the central 
limit theorem do not work. We have shown in an 
earlier paper that the median,  , and median 
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absolute deviation, , can be considered in place 
of  and  which do not exist.

 A practical approach suggested in the 
literature to estimate  is to plot  versus 

 and to use the slope of the line as 

estimators of . This could be heuristically argued 
by taking the logarithm of both sides of (3):

(6) 

However, the constant, , also 
contains the unknown parameters  and  
(Palmer,1992). Furthermore, a careless use of 
regression method to estimate  may lead to 
erroneous conclusions. For instance, if x were 
normally distributed with mean  and 
variance 

(7)  ,

then:

(8) .

Equation (8) says  but x is not even 
distributed according to a fractal distribution.

3.0  The Proposed Fractality Test
Let  be iid G(.) where G(.) is an 

unknown absolutely continuous function with 
respect to a Lebesque measure. Without loss 
of generality, we assume that  and in 
fact,  for i= 1, 2, …., n. The idea is to fit a 
fractal distribution  to the quantile of the 
distribution G(.).

Data sets may exhibit monofractal, multifractal 
or non – fractal behavior. Observations  
that exhibit monofractality obeys the fractal 
distribution (3) with a single defining fractal 

dimension ; multifractal observations obey (3) 
but different ’s  work for different scales viz. small 
scale to larger scales. Finally, G(.) may not even be a 
fractal distribution in which case, different  work 
for  so that even for the same scale, different  
will be found.

Indicators of Monofractality 
Let  be the th quantile of G(.):

(9)…

At each of th quantile of G(.), we fit a power 
law distribution F(.) such that:

(10)…

or equivalently, obtain:

(11)… , for all .

Denote the empirical quantiles by  
where . An estimate 

of  can be obtained from (11):

(12)… .

 With , we know 

that  so that (11) is a 

monotone function of  (in fact, monotonic non-
decreasing). We state this as a result:

Result 1: Let  
then  is a monotonic non – decreasing function 
of .  

Proof:
Let  then  so 

. By the monotone property of the 



8 4

logarithm, . Obviously, 

. It follows that:

  

Or    

  .

Since , we obtain:

Thus:

  
   as desired 

It is clear that λ(x) is a one-to-one function. In 
effect, we have succeeded in establishing a one-to-
one , monotonic increasing transformation of the 
random variables X =  { x1,x2,…,xn} to the space Ω 
of the fractal dimensions λ greater than or equal 
to 1. The advantage of working with the space Ω 
is that the fluctuations in the values of x can be 
more clearly seen in Ω than in the original set of 
observations. The transformation can be viewed 
as a powerful microscope that magnifies small 
differences in the original values.

Let , . 

The series  is a discrete time series indexed 
by k (or equivalently, ). Define sk to be the scale 
function.

Result 2. Let  , k =1, 2, 

…, n-1 be the estimates of  obtained by fitting 
the ath  quartiles of a distribution G(.) to a power 
– law distribution F(.). If the time series  is a 
trendless series for k = 1,2,…,n, then , and 
the original observations come from a monofractal 
distribution with fractal dimension equal to . 
Equivalently, let:

  
     be a 

model for the fractal dimensions as a function of 
the scale sk. If b = 0, then  is an estimate of  
and the data come from a monofractal distribution 
F(.).

Proof: 
From:

We conclude that b = 0 if { } is monotonic 
non – decreasing since:

 
.

 From:

 

We conclude that . From these, we 
deduce that there is one  that works for all scales 
sk  , hence, the distribution is monofractal.    

For monofractal distributions, the distribution 
of the fractal dimensions λk is almost a singular 
distribution with P(λ = λ0) = 1. We generated 
100,000 monofractal random variables with λ = 
1.67. The trend analysis is shown  in the figure 
below:

R e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l J u n e
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The histogram for the values of the fractal dimensions is shown below:

while the graph of the fractal dimensions versus scale is shown below:

2 0 1 3 Pa d u a ,  A d a n z a ,  B a r a b a t  a n d  R e g a l a d o
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Indicators of Multifractality 
The usual way to deal with multifractal 

observations is to use the multifractal formalism. 
Many authors have developed the concept 
of  multifractality and its formalism applying it 
to several fields of scientific research (Davis et 
al.(1994); Diego et al.(1999); Peng C-K et al. (1995)).

A partition function Z(q,ε) is defined which 
essentially sums up the probability measures µj(ε)  
depending on ε or scale of the boxes used to cover 
the sample. This partition function obeys a power 
law :

 Z(q,ε) = kεT(q).

For a certain box j, the probability measure is 
assumed to obey:

 µ j(ε) = k1εαj.

The cardinality of all subsets Sα having the 
same value of α is denoted by Nα(ε) and obeys:

 Nα(ε) = k2ε-f(α).

The curve f(α) is called the Legendre spectrum 
and is a single-humped function for a multifractal 
and reduces to a point for a monofractal. In order 
to make quantitative statements about possible 
differences in the Legendre or multifractal spectra 
coming from different signals, it is usual to fit a 
quadratic function:

 
 (f(α)) = A(α-α0)2 + B(α- α0) + C

where α0 is the position of the x-coordinate of the  
maxima. If α0 is low, the signal is correlated and the 
underlying process loses fine structure, becoming 
more regular in appearance. Thus, we shall refer 
to this as a ruggedness measure. The parameter 
B is a measure of asymmetry of the curve: zero 

for symmetric shapes, positive or negative for left-
skewed or right-skewed shapes respectively. The 
asymmetry parameter B gives information on the 
dominance of low or high fractal exponents with 
respect to the other. A right-skewed spectrum 
denotes relatively strongly weighted high fractal 
exponents, corresponding to fine structures, and 
low ones (more smooth looking) for left skewed 
spectra.

 The width of the spectrum is defined as:

W  = αmax – αmin

where f(αmax) = f(αmin) = 0.

The width measures the length of the fractal 
exponents in the signal: the wider this range, the 
richer the signal is in structure.

Multifractal Spectra via  λ(s)
Our method proposes to replace f(.) in the 

multifractal formalism by the function:

 λ(s) = 1 – log(1- α  )s

where the scale function s =  . We have 

demonstrated that λ(s) is 1-1, a  monotone 
increasing function of x, and  therefore qualifies as 
a spectrum of the original signals x. If λ(s) reduces 
to a point or a cluster of points, then we conclude 
that we have a monofractal, otherwise, if it shows 
a single-humped function, then we conclude the 
presence of a multifractal set of observations. In a 
similar vein, we can then express λ(s) as:

 λ(s) = A(s-s0)2 + B(s- s0) + C

parameters A,B and C = λ(s0) and their usual 
interpretations. Note the simplicity of the approach 
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as opposed to the classical multifractal formalisms.

Test Algorithm
(1) Sort  from smallest to 

highest. Denote the sorted values by 
.

(2) Assign the weights 
. Remove the last observations. (highest 
observation). Let .

(3) Compute  based on (4) and (5).
(4) Do a time series plot for  , 

, and regress  versus t 
where t is defined in Result 2,  
If Ho: b = 0, then conclude  came 
from a power – law distribution with fractal 
dimension ; else, compute the multifractal 
spectra. If there is a single-humped continuous 
function, then the observations come from 
a multifractal distribution with spectral 
parameters A,B and C earlier mentioned. 

4.0  Simulation Results
We performed three simulation experiments 

using a monofractal distribution with λ = 1.63 
and n = 1000;  a multifractal distribution with λ1 
= 1.33, λ2 = 1.67with n1= n2 = 1000; and a non-
fractal distribution , namely, the standard normal 
distribution N(0,1).

Result 1: Figure 1 shows the data displayed 
as a time series of values from a monofractal 
distribution. Spikes are noted in the graph of the 
time series

Table 1 summarizes the descriptive statistics 
for the estimated value of the fractal dimension.

Table 1: Descriptive Statistics for the Estimated Fractal Dimension

Variable         N        Mean      Median        StDev
lambda          999   1.6227     1.6357          0.0840 

Figure 2 shows the scatterplot of the 
estimated values of the fractal dimension versus 
the reciprocal of the logarithm of the data divided 
by the minimum value.

The scatterplot shows no trend in the values of 
the fractal dimension as a function of the scale. This 
is supported by the regression analysis performed 
on lambda versus the scale as reflected in Table 2.

Table 2: Regression Analysis of Lambda versus Scale

The regression equation is
lambda = 1.62 -0.000000 LOG X/THETA

Predictor      Coef                   SE Coef            T               P
Constant     1.62059             0.00166          975.54    0.000
LOG X/TH    -0.00000008   0.00009366   -0.00        0.999

Since b = 0, we conclude that the data came 
from a monofractal distribution with  fractal 
dimension approximately 1.6227 ( as opposed to 
the theoretical value of 1.63).

Figure 1: Time Series of Observations from a monofractal

Figure 2: Scatterplot of lambda versus 1/log(x/theta)

2 0 1 3 Pa d u a ,  A d a n z a ,  B a r a b a t  a n d  R e g a l a d o
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The simulation was repeated 100 times for 
n = 1000 observations from the monofractal 
distribution with essentially the same results. The 
statistics for the 100 replications are displayed in 
Table 3:

Table 3: Descriptive Statistics for 100 replications on a monofractal

Statistic                       Mean SE(Mean)
Lambda   1.6271 0.06420
Regression Coeff.  0.0001 0.00003

Result 2:  Figure 3 shows the plot of the data 
obtained from a normal distribution with mean 
0 and variance 1 (N(0,1)). The absolute values 
of the observations were obtained in order to 
put the context in fractal statistics. We note the 
massive “spikeness” of the data as opposed to the 
monofractal observations obtained earlier.

The spikes are likewise inherited by the 
estimated values of lambda showing that no single 
fractal dimension can be used to fully describe the 
data fluctuations. In fact, a different exponent can be 
found for each observation. This is illustrated in Figure 
4.

Table 3 shows the descriptive statistics obtained 
for the estimated values of the fractal dimensions 
when 10,000 standard normal variates were 
generated and the corresponding fractal dimensions 
computed each for 30 different sampling runs.

Figure 4: Time series of the estimated values of lambda

Table 3: Descriptive Statistics for the fractal dimension
=================================================================
Variable N        Mean      Median      TrMean StDev     SE Mean
lambda1 10000      1.0857      1.0623      1.0772      0.0802      0.0008
lambda2 10000      1.1270      1.0942      1.1151      0.1149      0.0011
lambda3 10000      1.0974      1.0713      1.0879      0.0903      0.0009
lambda4           10000      1.1124      1.0827      1.1016      0.1030      0.0010
lambda5           10000      1.1188      1.0879      1.1075      0.1083     0.0011
lambda6           10000      1.1370      1.1023      1.1244     0.1226      0.0012
lambda7           10000      1.0858      1.0623      1.0773      0.0803      0.0008
lambda 8          10000      1.1015      1.0744      1.0916      0.0938      0.0009
lambda9           10000      1.1186      1.0877      1.1074      0.1081      0.0011
lambda10          10000      1.0948      1.0693      1.0855      0.0879      0.0009
lambda11          10000      1.0859      1.0625      1.0774      0.0802      0.0008
lambda12          10000      1.1118      1.0824      1.1011      0.1024      0.0010
lambda13          10000      1.1366      1.1017      1.1239      0.1228      0.0012
lambda14          10000      1.0913      1.0665      1.0823      0.0850      0.0009
lambda15          10000      1.1118     1.0823      1.1011      0.1023      0.0010
lambda16          10000      1.1045      1.0767      1.0944     0.0963      0.0010
lambda17          10000      1.1143      1.0842      1.1034      0.1045      0.0010
lambda18          10000      1.1030      1.0756      1.0930      0.0951      0.0010
lambda19          10000      1.0850      1.0618      1.0765      0.0795      0.0008
lambda20          10000      1.1091      1.0803      1.0986      0.1002      0.0010

R e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l J u n e



8 9

A plot of the estimated values of lambda versus the reciprocal of log (y/θ) or the scale, shows an almost 
vertical line (of almost infinite slope). Figure 5 shows the situation.

The histogram of the estimated values of 
lambda for 10,000 samples from the standard normal 
distribution shows a definite pattern of exponentially 
distributed random variates as shown in Figure 6 and 
whose density function can be written as:

(13)  g(λ) = Ae-kλ = ke-k(λ-1) λ > 1

where A = kek. For the standard normal random 
variates whose mean fractional dimension is 1.1050, 
the value of k is k = 1/0.1050 = 9.5238. It follows that 
(13) becomes:

(14) g(λ) = 9.5238 e-9.5238(λ -1), λ > 1

Result 3: Two fractal distributions were mixed. 
One of the fractal distributions has a dimension 
equal to 1.33 while the other has a fractal 
dimension of 1.67. One thousand observations 
(1000) were each taken from the two distributions. 
Figure 7 shows the time series plot of the mixed 
observations. Note that the time series plot 
shows a signature plot for fractal or multifractal 
observations.

(Table 3 continued)

Figure 5: Plot of lambda versus scale for normal variates.

Figure 7: Time Series Plot of the mixed fractals

=================================================================
Variable  N Mean Median      TrMean Std Dev     SE(mean)
lambda21          10000      1.0849      1.0616      1.0764      0.0796      0.0008
lambda22          10000      1.1069      1.0784      1.0966      0.0985      0.0010
lambda23          10000      1.0850      1.0618      1.0765      0.0795      0.0008
lambda24          10000      1.0850      1.0617      1.0765      0.0796      0.0008
lambda25          10000      1.0851      1.0618      1.0766      0.0796      0.0008
lambda26          10000      1.1109      1.0817      1.1002      0.1016      0.0010
lambda27          10000      1.1169      1.0864      1.1058      0.1067      0.0011
lambda28          10000      1.1151      1.0851      1.1041      0.1050      0.0010
lambda29          10000     1.1204      1.0892      1.1090      0.1094      0.0011
lambda30          10000      1.1070      1.0786      1.0967      0.0984      0.0010
Variable            N        Mean      Median      TrMean       StDev        SE Mean
lambda           30      1.1050      1.1069     1.1041      0.0157    0.0029
==================================================================

2 0 1 3 Pa d u a ,  A d a n z a ,  B a r a b a t  a n d  R e g a l a d o
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Figure 8 shows the histogram of the computed 
values of lambda. Notice that the probability 
distribution of the random variables representing the 
fractal dimensions , lambda, appear to obey a power 
law distribution.

Figure 9 shows a scatterplot of lambda versus 
scale. Note that the function appears to be a single 
humped continuous function up to scales between 3 
to 4. This illustrates that the data may have come from 
a mixture of two fractal distributions.

Lapenna et al. (2004), using a different method 
for constructing the multifractal spectra, averred 
that a single-humped shape is typical of all 
multifractal signals.

Quadratic Fit
Using the usual least-squares method, we 

fitted a quadratic function to the multifractal 
spectrum with λ as the response variable and s, s2 

Figure 8:  Histogram of the values of lambda

Figure 9: Plot of the multifractal spectra

as the predictors. The resulting quadratic function 
was differentiated to obtain s0. The quadratic fit 
around s0  = 2.25 is shown below:

The regression equation is
lambda = 1.62 + 0.00009 (scale-s0) - 0.0173 (scale-s0)2

1999 cases used 1 cases contain missing values

Predictor   Coef               SE Coef          T               P
Constant  1.62116         0.00242         671.13    0.000
scale-s0     0.000088      0.001162      0.08         0.939
(scale-s      -0.0173221   0.0003471    -49.90     0.000

S = 0.07067     R-Sq = 69.9%     R-Sq(adj) = 69.9%

Here A = -0.0173, B = 0.00009, C = 1.62, showing 
slight left-skewness (B =.00009)  of the signals but 
with defined fine structures (so = 2.25). The width 
is W = 9.4221-0.0365 = 9.3856 which is quite wide 
showing that the signals are quite rich in structure. 
The Hurst exponents (λ) themselves show that 
the series behaviour is characterized by persistent 
behaviour: low(high) values are more likely to be 
followed by low (high) values of the signals.

Further quadratic fit on the unusual 
observations found after the first regression pass 
showed that the fractal dimension λ = 1.33 had 
B = -0.00958 demonstrating that these set of 
observations were in fact right skewed but those 
belonging to the fractal dimension λ = 1.67 had 
positive B or left skewed appearance. On the 
average, the overall effect is to have slightly left 
skewed signals with wide spectrum.

5.0  Conclusion
The paper proposed a test for monofractality 

which, in effect, also tests for multifractality or non-
fractality of a set of observations. For monofractal 
observations, the proposed new multifractal 
spectral analysis revealed a single point (singularity 
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at a point) while for multifractal observations, a 
single-humped continuous quadratic function is 
observed. The parameters of the quadratic function 
are interpreted as the measure of asymmetry (B), 
ruggedness (C) and width (W). The new proposed 
multifractal spectrum function is easier to calculate 
and is consistent with the more complicated 
Legendre spectrum proposed in the literature.
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