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The Density of Primes Less or Equal to a Positive Integer up 
to 20,000: Fractal Approximation
1R o d e l  B .  A z u r a ,  1D e n n i s  A .  Ta r e p e ,  2M a r k  S .  B o r r e s  a n d  3J o y  Pa n d u y o s

Abstract

The highly irregular and rough fluctuations of the number of primes less or equal to a 
positive integer x for smaller values of x ( x≤20,000) renders the approximations through 
the Prime Number Theorem quite unreliable. A fractal probability distribution more 
specifically, a multifractal fit to the density of primes less or equal to x for small values of 
x, is tried in this study. Results reveal that the multifractal fit to the density of primes in this 
situation outperforms the Prime Number Theorem approximation by almost 200% viz. the 
prediction error incurred by using the PNT approximation is double that of the multifractal 
fit to the density of primes. The study strongly suggests that a better multifractal distribution 
exists, even for large x, than the Prime Number approximation to the density of primes.

Keywords: density of primes, prime number theorem, multifractal distribution
AMS classification: number theory, applied mathematics

1.0  Introduction
This study explores the possibility of fitting a 

fractal density to the distribution of prime numbers 
less than or equal to a positive integer X (X ≤ 
20,000). This is the first in a series of papers which 
ultimately culminates in providing for a fractal  
approximation to the density of primes less than 
or equal to any positive integer. For larger values 
of X, the prime number theorem (PNT) provides an 
asymptotic approximation namely:

1. 
xx

x
log

1)(
≈

π
, for large X, (Legendre and 

   Gauss (1760))

where =)(xπ number of prime less than or equal to X.

 =)log(x natural logarithm of X.

For small values of X, e.g nx 10=10
n
, ,6,5,4,3,2,1=n  

the difference between the actual )(xπ and that 
estimated by PNT (say, )(xPNTπ )is quite large 
(Padua, 2012).

The PNT is a smooth approximation of the 
density of primes. Consequently, the fluctuation 

in the values of 
x
x)(π

 cannot be captured by 

this approximation especially for small values 
of X. On the other hand, fractal analysis provides 
a convenient platform for modelling repeated 

large and small scale fluctuations in the values 

of 
x
x)(π . Figure 1 shows the graph of the actual 

approximation for small values of X, :20,...,3,2,1=x 20:
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Figure 1: Actual Density of Primes, PNT and Fractal Approximation X=2,3,...20

After the proof of M.  De La Valee Poussin 
and J. Hadamard (1854) of the prime number 
theorem (PNT), there had been several attempts 
to improve on its smoothing approximation 
particularly for small values of X. Notable among 
these attempts  were those provided by Leibnitz 
and Bernoulli: 

2.                
BxAx

x
+

≈
log

1)(π

where A and B are suitably chosen constants. 
Riemann later showed that ,1=A 0=B remain 
the best choices which brings us back to the PNT. 
In fact, Riemann demonstrated the truth of the 
remarkable statement that “among all possible 

smooth approximation to 
x
x)(π

, the logarithmic 

smoothing is the best.” (Erdos and Dudley, 1983)
 Thus, any attempt to improve on the 

approximation of 
x
x)(π

 must necessarily stay out 

of the context of smooth function. This study is one 
such attempt. We organize the paper as follows: 
Section 2 discusses the importance of the density 
of primes via the Prime number theorem (PNT) in 
number theory; Section 3 introduces the concept 
of Fractal statistical analysis as developed by 

Padua et al. (2012) with the end-in-view   of using 
the statistical methodology therein, to address 
the shortcoming of PNT for small x ( up 610=x 106); 
section 4 gives the research methodology; section 
5 gives the results and conclusion of the study.

2.0 Density of Primes
Prime numbers are positive integers greater 

than 1 whose divisors are one (1) and itself 
only.  The first and only even prime is 2. Euclid 
(n.d.) proved the famous fundamental theorem 
of arithmetic: “There are infinitely many prime 
numbers” by reductio ad absurdum. Moreover, he 
also demonstrated that every positive integer can 
be decomposed into the product of primes less 
than that integer:

3.        ∏
=
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iPx
1

, where 
x

Pi  for all i .

It is this property of primes that makes 
them important in mathematics: they are the 
fundamental building blocks of positive integers.

To date, there is no readily available formula 
for generating prime numbers. However, a famous 
conjecture by Berndhardt Riemann (1870) states 
that the location of the zeroes of the zeta function:
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considered as an analytic continuation to the 

entire complex plane is on the line 2
1

=x   (viz, 

itz +=
2
1

). If true, the location of the zeroes of 

the zeta function relates to the distribution of 
primes. He asserted then that degree to which the 
density of primes less or equal to X differs from 

)ln(
1
x  varies in a “systematically random fashion” 

implying that although it is not possible to predict 
when the next prime will occur, the general pattern 
of primes appears “ regular “( Dunham, (1990)).

The connection between primes and the 
Riemann zeta function was demonstrated by Euler. 
Note that we can write:

In the region of absolute convergence of the zeta 
function, we have:

This age-old problem has fundamental 
applications in computer security today.  
Computer security codes are expressed in term 
of huge numbers which the entails factoring 
these numbers into their prime factorization. The 
larger the number (say about 250 digits), the more 
difficult it is to decrypt the code. Cryptographers 
and security experts are worried that if powerful 
enough techniques are developed ( in relation 
to the Riemann hypothesis) which will lead to 
better factoring algorithms, then the current 
cryptosystems will become vulnerable. 

3.0 Fractal Statistics
Rather than deal directly with a difficult 

Riemann hypothesis in approximating the number 
of primes less or equal to x, we prefer to approach 

the problem of estimating 
x
x)(π outside the 

realm of continuous and smooth techniques.  This 
approach is anchored on fractal Geometry which 
thrives on the analysis of roughness, fluctuation 
and irregularities,  

Fractal Geometry was firs placed in formal 
mathematical setting by Benoit Mandelbrot (1967) 
in his book “Fractal: the Geometry of nature“. 
He argued, essentially, that nature and natural 
processes are highly irregular, fluctuating and 
rough for which current mathematical methods( 
accumulated over more than two thousand 
years) of employing smooth and regular curves 
are inadequate. He then proceeded to describe 
“roughness” through the fractal dimension )(λ  of 
a natural geometric object. A geometric object is 
said to be “fractal” if (a) it exhibits ruggedness or 
irregularities repeated at various scales, and (b) it 
possesses a fractional (non-integer) dimension. 
The box-counting fractal dimension of an object is:

5. 
)log(
)log(

n
m

=λ

where =m Number of copies of the observed fluctuations

  =n Scaling factor

For instance, the fractal dimension of the 
famous Cantor set is 63.0=λ 0.63. The Cantor set is 
obtained by successively removing the middle 
third of a unit interval. After doing the process over 
and over again, what remains are called “ fractal 
dusts” which constitute the Cantor set.

Mandelbrot passed away in October, 2010 
without extending his work from Geometry to the 
other fields of Mathematics: Statistics, Analysis and 
Algebra. In December, 2012 Padua et al. (2012) 
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published an initial attempt to extend Fractal 
Geometry to Fractal Statistics in the paper: “Data 
Roughness and Fractal Statistics.” Essentially, the 
paper exploited the connection between fractal 
dimension )(λ and space filling property of a 
fractal object with information theory.

Let X be a random variable whose probability 
density function obeys the power law:

6.

λ

θθ
λ −














 −

=
xxf 1)( , θ≥x , 0≥θ , 0>λ

The random variable X is then called a fractal 
random variable and )(xf is its fractal probability 
distribution. The first moment of X (its mean) will not 
exist for 2<λ . Consequently, the second moment 
(its variance) will also not exist for 2<λ . The 
parameterλ  of (6) is called the fractal dimension 
of X.

For 2≤λ , the non-existence of the 
second moment or variance of X implies that 
observation from fractal distribution are highly 
erratic, fluctuating and rough. In fact, the Central 
Limit Theorem fails to apply in cases where the 
observation come from fractal distribution.

For 2>λ , the variance 2σ exist and is related 
to λ  by:

7. θσλ += 1  θ σ  (Padua et al. (2012))
In other words, when the variance exists, the 

fractal dimension λ describes the variability of 
the data around the mean just as the standard 
deviation (σ ) does.  Further, the fractal dimension, 
λ , of X is a more general description of data 
variability than σ .

From (6), the maximum likelihood estimator of
λ is easily obtained as
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for nxxx ,...,, 21 , iid )(xf , Similarly, the cumulative 

distribution function (cdf), )(xF , is:

9. 
λ

θ
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Equation (9) gives the probability that an observation 
X is less or equal to x.

4.0 Study Objectives
The study aims to make use of the ability of 

fractal statistics to describe irregular and highly 
fluctuating series of observation to deduce the 
distribution of primes less or equal to a number x ,

x
x)(π . Specifically:

a.  Obtain the graph of 
x
x)(π  versus x for  

 610,...,3,2=x 106.

b.  Obtain the numerical approximation due 

   to the  prime number theorem (PNT) of  

 
)log(

1)(
xx

x
≈

π
 for 610,...,3,2=x  106 and  

 compare the results with the actual 
x
x)(π

.

c.   Fit a fractal distribution to 
x
x)(π

for   

 
610,...,3,2=x  106 both for monofractal and  

 multifractal cases.

d.  Obtain the numerical approximation due 

   to the fractal distribution fit made in (3) for  

 
610,...,3,2=x  106

e.  Compare the numerical approximation of PNT 

   and the fractal fit (FF).

5.0 Research Design and Methodology
Data for the prime, iP , are obtained from the 

freely accessible WOLFRAM.MATHWORLD website. 
The website contains all prime known up to 

2510=x
1025.  The listing of primes was used to construct 
the actual density of primes less or equal to x:
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An EXCEL program was developed to 
automate the process of computing (10). The 

pairs 







x
xx i

i
)(, π  were saved to a file. Next, we 

computed the PNT approximation:

 11. 
)ln(

1
x

PNT = , 610,...,3,2=x 106

and saved the pairs 







)ln(

1,
i

i x
x to a separate file.

 Finally we computed the fractal fit 
approximation ( FF ) in a series of steps. From 
the data, we first computed for the maximum-
likelihood estimator of λ :

12. 
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λ , where 2=θ (minimum of x’s)

Next, we plugged in the value λ̂ obtained in 
(12) to the cumulative distribution function )(xF :

13.
λ

θ

ˆ1

1)(ˆ
−







−=

xxFn , 2=θ ,
610,...,3,2=x 106,

610=n  106

The pairs  ( ))(ˆ, ini xFx  are saved in a separate file.
Using MATLAB we then proceeded to graph 

the following curves  in a single figure:
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In order to compare the performance of PNT 
versus FF, we computed the absolute error:

Multi-Fractal Distribution Fit (MFF)
The fit provided by (9) assume that there 

is a single exponent (fractal dimension) λ  that 
would explain the global behaviour of 

x
x)(π . In 

the event that (10) proves to be large for the FF 
approximation using only one λ̂ , we modify (9) 
and assume several fractal dimensions ( or multi 
fractal system). In this case, we assume that:

The pairs ( )ii Fx ˆ,  are saved and (14) is 

computed. We will refer to this as the multifractal 
fit (MFF).

Prediction Model
For prediction purposes, we regress the values 

of λ obtained in (16) to the values of x:

 .     λi = a + bh(xi ), i = 1,2,...,n

For our prediction of the value of λn+k, for   k 
=1,2,..., we use:

 . λn+k = a + bh(xn+k ), k = 1,2,...

where h(.) is a function of x.

6.0 Results and Discussions:

6.1 Initial Experiment for X ≤ 1,000
Table 1 shows the mean absolute error for the 

PNT, FF (using the maximum likelihood estimator 
of the fractal dimension) and the MFF (multifractal 
estimator of the density of primes) for
 X = 2,3,...,1000:

A z u r a ,  Ta r e p e ,  B o r r e s  a n d  Pa n d u y o s
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Note that the PNT outperforms the monofractal 
fit (FF) using a single fractal dimension λ = 1.1321 
but is inferior to the multifractal fit (MFF). The latter 
has zero mean absolute error which means that 
the multifractal fit perfectly predicted the actual 
density of primes for all  X less than 1000. Figure 2 
shows the graphs of the three estimators with the 
actual density of primes:

Since the MFF was found to be the most superior 
estimator of the actual density of primes, we fitted 
a prediction line on it to forecast future values of 
the fractal dimensions beyond  X = 1000. The fitted 
regression line is given below:

The regression equation is
lambda1 = 0.204 + 0.395/LN(X)
R-SQUARED : 82.10%

MEAN ABSOLUTE PREDICTION ERROR: 0.00292 = 0.292%

Table 1: Mean Absolute Error of the Three Estimators of the 
Density of Primes for X ≤ 1000

Table 2: Actual vs. MFF Prediction Values

Figure 2: Comparison of PNT, FF, MFF with the Actual Density of Primes less or equal to 1000

ESTIMATOR MAE SD

PNT 0.03113 0.03112

FF 0.10801 0.05967

MFF 0.00000 0.00000

X new lambda new est. Actual
1001 0.261174 0.164575 0.168000
1002 0.261166 0.164542 0.167665
1003 0.261157 0.164508 0.164980
1004 0.261149 0.164475 0.167331
1005 0.261141 0.164442 0.167164
1006 0.261133 0.164408 0.166998
1007 0.261124 0.164375 0.166832
1008 0.261116 0.164342 0.166667
1009 0.261108 0.164308 0.167493
1010 0.261111 0.165109 0.177438
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Figure 3 shows the actual density of primes for the 
next 10 values of X and the MFF fit.

The best fitting regression curve gives an 
r-squared value of 82.10%. Moreover, we note that, as 
expected, the absolute error of prediction gradually 
increases as X gets farther and farther away from the 
last given value at X = 1000. On the average, however, 
the mean absolute prediction error is less than 1%.

Table 3: Mean Absolute Error of PNT and MFF for X ≤ 10,000

Figure 3: Predicted density of primes by MFF versus actual density 
of primes

ESTIMATOR MAE SD
PNT 0.01820 0.01098
MFF 0.00000 0.00000

6.2 Second Experiment for X ≤ 10,000
Next, we continued exploring the data set on 

primes by performing the same experiment on a 
larger sample size ( ten(10) times larger than the 
initial experiment). We have eliminated FF from 
consideration since the initial experiment showed 
that it does not perform well. We concentrate on 
the performance of the PNT and the MFF fit. Table 
3 shows the Mean Absolute Error for PNT and MFF :

A z u r a ,  Ta r e p e ,  B o r r e s  a n d  Pa n d u y o s

Again, the MFF perfectly predicted the actual 
density of primes while the PNT incurred a mean 
absolute error of 1.820%. Figure 4 shows the plot of 
PNT, MFF and the actual density of primes:

Figure 4: MFF, PNT versus Actual Density of Primes
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Table 4: Mean Absolute Prediction Errors for MFF and PNT for X=10,001 TO 10,010

Next, we performed the usual regression on the values of lambda versus the logarithm of X: The 
regression equation is:lambda = 0.175 + 0.524/ln(X)with: R-squared : 86.9%

Figure 4 shows the graph of MFF,PNT and the actual density of primes within the prediction region 
from X = 10001 to X = 10010:

Figure 4: Values of MFF(predicted), PNT (predicted) and Actual Density of Primes

X actual density PNT lambda MFF MFF error PNT error

10001 0.122900 0.108572 0.231892 0.118147 0.0047532 0.0143276

10002 0.122888 0.108571 0.231891 0.118145 0.0047429 0.0143164

10003 0.122875 0.108570 0.231891 0.118143 0.0047327 0.0143053

10004 0.122863 0.108569 0.231890 0.118141 0.0047225 0.0142942

10005 0.122851 0.108568 0.231889 0.118139 0.0047123 0.0142831

10006 0.122839 0.108567 0.231889 0.118137 0.0047021 0.0142720

10007 0.122826 0.108565 0.231888 0.118134 0.0046919 0.0142609

10008 0.122814 0.108564 0.231888 0.118132 0.0046817 0.0142498

10009 0.122802 0.108563 0.231887 0.118130 0.0046715 0.0142387

10010 0.122789 0.108562 0.231886 0.118128 0.0046613 0.0142276

MEAN ABSOLUTE PREDICTION ERROR: 0.00471 0.01428

6.3 Third Experiment with X ≤20,000 
Our third experiment increased the sample 

size further by doubling the previous number of 
primes.  Table 4 shows the mean absolute errors of 
the PNT and MFF for this experiment.

Note that while the MAE of the PNT increased 
to 0.02317, the MFF remained in perfect 
synchronization with the actual density of primes 
for X = 2 to X = 20,000. Figure 5 shows the graph of 
PNT, MFF and the actual density of primes:

D e c e m b e rR e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l
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For prediction purposes, we regressed the values of the fractional dimensions, lambda, with the 
logarithm of X as before to obtain:                               

log(lambda) = 0.413 - 0.483 lnX + 0.0312 (lnX) 2 , R-squared: 60.70%, 

Table 4: Mean Absolute Error of PNT and MFF for X ≤ 20,000

Table 5: Mean Absolute Prediction Error for PNT and MFF X = 20001 to X = 20010

ESTIMATOR MAE SD

PNT 0.02317 0.01367

MFF 0.00000 0.00000

Figure 5: MFF, PNT and the Actual Density of Primes for X ≤ 20,000.

density new PNT lambda1 NEW MFF PNT(ERROR) MFF(ERROR)

0.061447 0.100974 0.269736 0.0691593 0.039527 0.0077123

0.061444 0.100974 0.269738 0.0691593 0.039530 0.0077153

0.061441 0.100973 0.26974 0.0691593 0.039532 0.0077183

0.061438 0.100972 0.269742 0.0691593 0.039535 0.0077213

0.061435 0.100972 0.269743 0.0691593 0.039537 0.0077243

0.061432 0.100971 0.269745 0.0691593 0.039540 0.0077273

0.061428 0.100971 0.269747 0.0691593 0.039542 0.0077313

0.061425 0.100970 0.269749 0.0691593 0.039545 0.0077343

0.061422 0.100970 0.269751 0.0691593 0.039548 0.0077373

0.061419 0.100969 0.269753 0.0691593 0.039550 0.0077403

MEAN  ABSOLUTE PREDICTION ERROR: 0.03954 0.0077262
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The ratio of the prediction error PNT to the 
prediction error MFF is:  5.1176 which means that 
the MFF is about  5 times more efficient than the 

Figure 6: Prediction Error Curves for MFF and PNT

Figure 7: Graph of log(lambda) versus log(X)
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The graph of log(lambda) versus log(x) is quite revealing of the behaviour of the fractal dimension. 
We show this below:

PNT approximation. Figure 6 shows the graph of 
the prediction error curves MFF and PNT:

Figure 7 shows that the fractal dimension 
decreases monotonically up to ln(X) ~9.25, and 
then it increases thereafter. The implication is that 

towards the tail of the series of values, the density 
of primes becomes more rugged.
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