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Some Results on Multifractal Spectral Analysis
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Abstract

A multifractal spectrum, based on an earlier paper and different from the Legendre 
multifractal spectrum (Padua et al. 2013) was examined in this paper. The examination 
yielded interesting results which enhanced the utility of the developed λ(s)-multifractal 
spectrum in analyzing real data. One of the results show that a mixture of several 
monofractal observations can be represented as a single monofractal distribution but 
whose spectrum is different from the spectrum of the original data. Thus, high fractal 
dimensional distributions can be infinitely decomposed into component monofractal 
dimensions. Further, we also show that given a multifractal set of observations, 
observations that fall on smaller scales obey a normal distribution. The study ends by 
providing possible avenues for future research particularly in the area of analytic number 
theory in relation to the Riemann hypothesis about the distribution of primes.

Keywords: multifractal, monofractal, λ(s)- spectrum, Legendre spectrum

1.0  Introduction
	 The utility of multifractal analysis in the 

analysis of seismic data in Italy was demonstrated 
by seismic data in Italy was demonstrated by 
Lapenna et al. (2003), in the Philippines by 
Panduyos and Padua (2013), and in other countries 
by various authors. Of these multifractal models of 
seismic data, the main tool used was Legendre’s 
multifractal spectrum which essentially involves 
finding a sequence of multifractal manifolds which 
can be expressed in terms of power laws. In Padua 
and Barabat (2013) a simpler multifractal spectrum 
λ(s) was found  useful in fractal data analysis.

Multifractal probability distributions are define 
as mixture of m monofractal distributions in the 
sense of Tukey (1972):

(1)	 	
where:

(2) 
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The exponents λi are the fractal dimensions which 
determine the information- filling property of an 
observation xi from this distribution. In several 
papers, authors claimed that fractal observations 
are, in fact, more pervasive in real – life than 
normal observations (Selvam (2008)), Lapenna et 
al (2003), Padua et al (2003), and Salazar (2013). 
As such, fractal distributions need to be examined 
more closely and classical normal-based methods, 
reviewed.

A useful device for examining multifractal 
observations is the multifractal spectrum. The 
current multifractal spectrum in use is the 
Legendre’ spectrum but its application is largely 
confined to scientists in specialized fields because 
of its complexity. Padua (2013) suggested a 
simpler version of a multifractal spectrum, namely:
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that behaves in exactly the same way as the 
Legendre’s spectrum. Thus, monofractal λ(s) - 
spectrum is a cluster of points or a single point 
while multifractal spectra are single – humped, 
continuous functions of scale s.

We present some results in relation to the 
behavior of λ(s) in this paper.  These results 
describe the behavior of the λ(s) – spectrum 
when applied to various probability distributions, 
including the multi – fractal distributions.

2.0 The λ(s) – spectrum

Let x1, x2, ..., xn be iid G(.) where G(.) is an 
unknown absolutely continuous distribution with 
respect to a Lebesque measure. Suppose also that 
xi ≥ θ for each i and θ>0.  The idea is to fit a fractal 
distribution:

Thus,

is obtained.

The fractal spectrum (7) was shown to be a one 
– to – one function, monotonically increasing with x 
on a logarithmic scale for non – fractal distributions. 
Instead of examining the observations on the data 
space, we propose to examine them in the spectral 
space. The value of  θ used in (8) serves as a 
powerful “microscope” that enhances the detailed 
picture of the spectrum λ(s) in terms of its finer 
structures.

We note that if x comes from fractal  
distribution with fractal dimension λ, then 

decreases with increasing x and 

decreasing θ. For a fixed observation x, we can 
increase (decrease) by decreasing θ (increasing θ), 
so that the value of θ serves to sharper the focus 
on the features of a fractal set. Viewed on a large 
scale, monofractal distributions have singular 
spectra  but when viewed 
on a lower scale, the spectral function forms a 
horizontal line (slope = 0). Similarly, multifractal 
distributions viewed on a larger scale (s) have a 
spectrum that behaves like power function  
but when viewed on a smaller scale, it behaves 
like a concave downward quadratic function  

 where A, B and C are 
parameters to be estimated.

3.0 Results
We now state some major results which we 

found by extensive simulation but which we will 
now prove mathematically.

Result 1. Let  

be monofractal   densities and suppose: 

is a mixture of monofractals, then F(x)can be 
expressed as a monofractal with dimension λ:
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where λ  is a weighted harmonic mean of λi.

Proof: Let

be the cumulative distribution function of the 
mixture densities f(x). When the observations are 
taken as a monofractal with dimension λ , then:

	

Let 

    
That is, we wish to find a λ such that:

or:

is the harmonic mean. It follows that  so that 

 With unequal weights   

where WH is the weighted harmonic mean.  
Note, however, that the monofractal 

representation of an inherently multifractal spectra 
down not have the same spectrum as the original 
set. This is because the set  

is just one of infinite number of possibilities to 
generate a fractal dimension λ as in (10).

Result 2. The probability distribution of the 
fractal dimension of fractal variables obeys the 
distribution:

Proof. The maximum likelihood estimator of λ 
obtained from:

and:

       
as desired 

We observe that this result is consistent with 
the behavior of the Legendre spectrum as well. 
(Lapenna, Macchiato et al (2003)).

Result 3. The information contributed by x on λ is:

                
where I(λ) is the Fisher’s information number.
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Proof:

Result 3 implies that the smaller values of x 
contribute more to the fractal dimension λ than 
the larger values. The smaller values, in fact, define 
the characteristic irregularity and ruggedness 
of the fractal observations. Larger values of λ, 
thus, denote more rugged and more irregular 
fluctuations of the values of x.

A corollary result that pertains to the Fisher’s 
information index is given in result 4.

Result 4. The multifractal spectrum:

    
where  is a bounded function of x.

Proof: We observe what happens to λ(x) at the 
endpoints:

     
The second term is an indeterminate of the form 

.

Applying L’ Hopital’s Rule

which is again an indeterminate. Applying L’ Hopital 
Rule again, we obtain:

     
In the case of monofractals,

     
and

    
Hence:

It follows that

     
At the other end, where , the minimum, we 
obtain:

        

which is an indeterminate of the form .

Applying L’Hopital Rule:

Thus:

         also.

We then conclude that  at the extreme 
endpoint of x, and is therefore bounded for 
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monofractal observations.
The graph of the λ(s) spectrum for typical 

monofractals is shown below:

In the case of multiple fractional dimensions 
or multifractals, we can represent the multifractal 
density as:

    

as found in Result 1. The corresponding cumulative 
distribution function is:

The corresponding values at the endpoints are:

As x →∞ or s →0, then,

Note that the multifractal spectrum is a single-
humped continuous function of scale (s). This was 
also mentioned in the work of Lapenna et al. (2003) 
using the Legendre spectrum method.

For random variables not distributed as 
monofractal, the behavior of the spectrum is quite 
different. In such cases, the multifractal spectrum 
monotically increases with x the rate of increase 
appears to involve a power law.

Result 5.  Let x be distributed according to 
some exponential distribution belonging to class:

The multifractal spectrum  obeys a power – 
law pattern provided  is a polynomial in x.

Proof:

Let  

And we examine the behavior of the  as 
 and as .

From:
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We obtain:

Thus,

 as . Now if the , 
then  so that  degree 
polynomial in θ as required.    

Obviously  
is a monotonic increasing polynomial in x. 
Result 5 shows that if  x  is distributed as ,  then 

  and  

near ; if x distributed as , then 

Work in Progress
We suspect a strong connection between 

multifractal analysis and the density of primes 
problem as embedded in the Riemann hypothesis 
for prime numbers. For instance, the density of 
primes less than or equal to a real number x is 
asymptotically equal to 1/log(x) which happens to 
be the scale in our proposed multifractal spectrum. 
We are currently working on the problem using the 
known number of primes up to x = 100,000,000.
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