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Abstract

A multifractal spectrum, based on an earlier paper and different from the Legendre
multifractal spectrum (Padua et al. 2013) was examined in this paper. The examination
yielded interesting results which enhanced the utility of the developed A(s)-multifractal
spectrum in analyzing real data. One of the results show that a mixture of several
monofractal observations can be represented as a single monofractal distribution but
whose spectrum is different from the spectrum of the original data. Thus, high fractal
dimensional distributions can be infinitely decomposed into component monofractal

dimensions. Further, we also show that given a multifractal set of observations,
observations that fall on smaller scales obey a normal distribution. The study ends by
providing possible avenues for future research particularly in the area of analytic number
theory in relation to the Riemann hypothesis about the distribution of primes.
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1.0 Introduction
The utility of multifractal analysis in the

analysis of seismic data in Italy was demonstrated
by seismic data in Italy was demonstrated by
Lapenna et al. (2003), in the Philippines by
Panduyos and Padua (2013), and in other countries
by various authors. Of these multifractal models of
seismic data, the main tool used was Legendre’s
multifractal spectrum which essentially involves
finding a sequence of multifractal manifolds which
can be expressed in terms of power laws. In Padua
and Barabat (2013) a simpler multifractal spectrum
A(s) was found useful in fractal data analysis.

Multifractal probability distributions are define
as mixture of m monofractal distributions in the
sense of Tukey (1972):

(1) fl) =wify(x) +wfyla) +o + wp (1), x = 6

where:
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The exponents /11. are the fractal dimensions which
determine the information- filling property of an
observation x, from this distribution. In several
papers, authors claimed that fractal observations
are, in fact, more pervasive in real - life than
normal observations (Selvam (2008)), Lapenna et
al (2003), Padua et al (2003), and Salazar (2013).
As such, fractal distributions need to be examined
more closely and classical normal-based methods,
reviewed.

A useful device for examining multifractal
observations is the multifractal spectrum. The
is the
Legendre’ spectrum but its application is largely
confined to scientists in specialized fields because
of its complexity. Padua (2013) suggested a
simpler version of a multifractal spectrum, namely:

current multifractal spectrum in use
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that behaves in exactly the same way as the
Legendre’s spectrum. Thus, monofractal A(s) -
spectrum is a cluster of points or a single point

Als)=1-— slog(l — F(x)), s=

while multifractal spectra are single - humped,
continuous functions of scale s.

We present some results in relation to the
behavior of A(s) in this paper.
describe the behavior of the A(s) - spectrum
when applied to various probability distributions,
including the multi - fractal distributions.

These results

2.0 The A(s) - spectrum

Letx, x, ..., X beiid G(.) where G(,) is an
unknown absolutely continuous distribution with
respect to a Lebesque measure. Suppose also that
x, > 0 foreach i and 0> (). The idea s to fit a fractal
distribution:

(4) F(x):l—(g)l_l L A>0 x>8

to the quantiles xo, < Xq, <+ < X, such that G(x“n) =a,.
Thus,

5 G =a=Fry=1-(2)"

2

which reduce to:

(6) (1—-MVlog (g) =log(1—1).

we obtain:

log(1-a)
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From which the fractal spectral function:

1

(8) A(s)y =1—1log(l—a)s, 1og(§)

S =

is obtained.
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The fractal spectrum (7) was shown to be a one
—to-onefunction, monotonically increasing with x
on alogarithmic scale for non - fractal distributions.
Instead of examining the observations on the data
space, we propose to examine them in the spectral
space. The value of @ used in (8) serves as a
powerful “microscope” that enhances the detailed
picture of the spectrum A(s) in terms of its finer
structures.

We note that
distribution with fractal

if x comes from fractal
dimension A, then

1 .
s = —— decreases with

a3

decreasing 6. For a fixed observation x, we can

increasing x and

increase (decrease) by decreasing @ (increasing 6),
so that the value of @ serves to sharper the focus
on the features of a fractal set. Viewed on a large
scale, monofractal distributions have singular
spectra (P(A(x) = A,) = 1) but when viewed
on a lower scale, the spectral function forms a
horizontal line (slope = 0). Similarly, multifractal
distributions viewed on a larger scale (s) have a
spectrum that behaves like power function As~*
but when viewed on a smaller scale, it behaves
like a concave downward quadratic function
A(s —s9)? + B(s — sy) + C where A,Band C are
parameters to be estimated.

3.0 Results

We now state some major results which we
found by extensive simulation but which we will
now prove mathematically.

Result 1. Let f;(x,4,), f2(x,15), f3(x, A3), . [, (2, A)
be monofractal densities and suppose:
fO) =X wifi(n4), Xiyw;=1,w; 20 foralli

is a mixture of monofractals, then F(x)can be
expressed as a monofractal with dimension A:
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where 4 is a weighted harmonic mean of 4.

Proof: Let

m m
X 1-2;
F(x)=1—ZWi(5) , Zwi=1
i=1 i=1

be the cumulative distribution function of the
mixture densities f{x). When the observations are
taken as a monofractal with dimension A, then:

Fix)=1— (f)H

6

Let S, = %, then:

1-2;

F(x)=1-Y" w;s, =1—(s)*

That is, we wish to find a A such that:

wWq Wo Wm 1
) ZtHmt "t =2
S, S, s, S5

or:
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, . A=
istheharmonicmean.ltfollowsthat $* = H sothat

logH . . logWH
2 =22 With unequal weights w;, A = ——

logs logs
where WH is the weighted harmonic mean. B

Note, however, that the monofractal

representation of an inherently multifractal spectra
down not have the same spectrum as the original
set. This is because the set (A, A5, A3, ..., 4;)
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is just one of infinite number of possibilities to
generate a fractal dimension A asin (10).

Result 2. The probability distribution of the
fractal dimension of fractal variables obeys the
distribution:

=220 5
= e -
IV =0 -ne
Ifs = — =, then g(y) = (A — Ds2e @5, 1 < y < o0, 52 0.
tog(3)

Proof. The maximum likelihood estimator of A
obtained from:
f(x)zj;l(f)_/1 x>0, 1>1
6 \0 e

-1

2=1+log(3)]

Lety = A, then:

G() =P <y)=P (1 + w;(l) < y) =p (x >0 ey_)

6
Hence:
-1

1
G(y)=1—F(HeF)=<e_y—1>, 1<y<e

and:

_ -1
90 =0

_@-1
e v-1

, 1<y <oeo,

as desired B

We observe that this result is consistent with
the behavior of the Legendre spectrum as well.
(Lapenna, Macchiato et al (2003)).

Result 3. The information contributed by x on A is:

1
1) =T

where I(7) is the Fisher’s information number.
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Proof:
_ d2logf _ dlogf 2
I(’D_E( A2 )_E( aA )
Using:
=227 as1xzo
f(x) = 3 , , x = 0.
We obtain:
I = as desired. ]

(A-1)?

Result 3 implies that the smaller values of x
contribute more to the fractal dimension A than
the larger values. The smaller values, in fact, define
the characteristic irregularity and ruggedness
of the fractal observations. Larger values of A,
thus, denote more rugged and more irregular
fluctuations of the values of x.

A corollary result that pertains to the Fisher’s
information index is given in result 4.

Result 4. The multifractal spectrum:

)L(Jc)=1—M x =0

or(z)

where @ = F(x) is a bounded function of x.

Proof: We observe what happens to A(x) at the
endpoints:

_ log(1—a)
lim

The second term is an indeterminate of the form

(=)

lim A(x) =1—
X—0e0

(=)

Applying L' Hopital’s Rule

December
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whichis again anindeterminate. Applying L'Hopital
Rule again, we obtain:

. (1—F(X)) —xf (x)
lim — 27 —
xl_rg’ log (g) x*"" S ) —F(x)

In the case of monofractals,

=) G

-4

and
Fo=1-()" 1-rw =)

Hence:

m log(1 — F(x))
log 3)

It follows that

= lim —x =—QA-1)=1-2

x—o00 x—00

lim, ,.iid(x)=1—-(1-21) =

At the other end, where = 8, the minimum, we
obtain:

log (1~ F(x)
log ()
0

which is an indeterminate of the form

x—6

Applying L'Hopital Rule:

g =FG) | —xf) _—0fO)
x—8 log (g) x-01—F(x) 1-—F(0)
Thus:

lim,_ g A(x) = 1 — 2 also.

We then conclude that A(x) = 4 at the extreme
endpoint of x, and is therefore bounded for
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monofractal observations.
The graph of the A(s) spectrum for typical
monofractals is shown below:
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In the case of multiple fractional dimensions
or multifractals, we can represent the multifractal
density as:

fO) = B wifi(x A),

as found in Result 1. The corresponding cumulative
distribution function is:

m m
x\ 1-4i
i=1 i=1

The corresponding values at the endpoints are:

As X >o0 0r s >0, then,

which is again a bounded function. m

A typical multifractal A(s) spectrum is shown below:
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Note that the multifractal spectrumis a single-
humped continuous function of scale (s). This was
also mentioned in the work of Lapenna et al. (2003)
using the Legendre spectrum method.

For random variables not distributed as
monofractal, the behavior of the spectrum is quite
different. In such cases, the multifractal spectrum
monotically increases with x the rate of increase
appears to involve a power law.

Result 5. Let x be distributed according to
some exponential distribution belonging to class:

f(x) = Ae "™ x>0
The multifractal spectrum A(x) obeys a power -
law pattern provided h(x) is a polynomial in x.

Proof:

L 1-F
Let A(X) - 1— og( x(x))
1og(3)
And we examine the behavior of the A(x) as
x —» coandas x — 0.

From:

lim

x—8

logl=F(x) . (  f&)
log (g) o (1 " f(x))

x—8
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We obtain:

log(1 — F(x))

o (%) =1 — 6h(6)

x-6

Thus,

A(x) - 6h(8) as x — 6. Now if the deg(h(x)) = p,
then deg(h(68)) = p — 1 so that A(x) — p degree
polynomial in & as required. ®

Obviously A(x) — eoas x — oo, hence A(x)
is a monotonic increasing polynomial in x.
Result 5 shows that if x is distributed as, then
abs(N(0,1)), then h(x) =;x? and A(x) = 67
near X = 0; if x distributed as exp (f3), then
h(x) = fxso A(x) = 6 nearx = 0.

Work in Progress

We suspect a strong connection between
multifractal analysis and the density of primes
problem as embedded in the Riemann hypothesis
for prime numbers. For instance, the density of
primes less than or equal to a real number x is
asymptotically equal to 1/log(x) which happens to
be the scale in our proposed multifractal spectrum.
We are currently working on the problem using the
known number of primes up to x = 100,000,000.
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