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Abstract

The study compares the performance of the Azura et al. (2013) prediction model for 
the fractal dimension of the density of primes less or equal to a positive integer x with 
the performance of an autoregressive integrated moving average model (ARIMA(p,d,q). 
The actual density of primes used in this study were gathered from published table of 
primes . Results revealed that the time series model ARIMA(p,d,q) outperforms the Azura 
et al. (2013) prediction model particularly for larger values of X in the range of forecast 
values. The time series model is more convenient to use in practice since it only involves the 
previous calculated values of the fractal dimensions.
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1.0  Introduction
Azura et al. (2013) demonstrated that the 

density of primes less or equal to a positive integer 
x can be approximated by a power-law(fractal) 
distribution by means of simulation. They also 
showed that the prediction error incurred by such 
a multifractal fit to the density of primes is smaller 
than that obtained when the Prime Number 
Theorem approximation is used particularly when 
x is of magnitude less or equal to a million (small 
values of x). These results are to be expected since 
the Prime Number Theorem is an asymptotic result 
which applies only when x is large. The Prime 
Number Theorem states that:

where π(x) is the number of primes less or equal 
to x, while the Multifractal Fit Hypothesis (MFH) of 
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Azura et al. (2013) states that:

Indeed, when π(x) is known, we can compute 
the exact value of λ, hereinafter referred to as the 
fractal dimension of x, as:

Currently, the value of π(x) is known up to x = 
1025 and published in various sources. It is when x 
exceeds this number that the approximation to the 
density of primes becomes of primary importance. 
Most algorithms depend on an unproved Riemann 
Hypothesis (Dudley, 2003) or on the asymptotic 
approximation provided by the Prime Number 
Theorem. In Azura et al. (2013), the known values 
of λ(x) are regressed to a non-linear function of x 
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to obtain a prediction formula:

4.....log λ(x) = a + b log(x) + c (log(x))2   , x  > 106 .

In their paper, they showed that the prediction 
error for x = 20,000 is less than 1%. The present 
study provides an alternative to the Azura et 
al. (2013) proposal by employing a time series 
autoregressive integrated moving average model 
(ARIMA(p,d,q)) using a Box-Jenkins approach (G. 
Box, Time Series Analysis, Forecasting and Control, 
1980). Time series approaches are useful in the 
sense that the prediction formulae obtained are 
dependent only on previously computed values of 
the fractal dimensions.  

2.0  Fractal Formalisms
In this section, we provide a brief overview 

of the fractal statistics formalisms introduced by 
Padua et al. (2012) and used in the paper of Azura 
et al. (2013). Let X be a random variable whose 
probability density function obeys the power law:
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The random variable X is then called a fractal 
random variable and )(xf is its fractal probability 
distribution. The first moment of X (its mean) will not 
exist for 2<λ . Consequently, the second moment 
(its variance) will also not exist for 2<λ . The 
parameterλ  of (6) is called the fractal dimension 
of X.

For 2≤λ , the non-existence of the 
second moment or variance of X implies that 
observation from fractal distribution are highly 
erratic, fluctuating and rough. In fact, the Central 
Limit Theorem fails to apply in cases where the 
observation come from fractal distribution.

For 2>λ , the variance 2σ  exist and is 
related to λ  by:

6. θσλ += 1  θσ    (Padua et al. (2012))

In other words, when the variance exists, the 
fractal dimension λ describes the variability of 
the data around the mean just as the standard 
deviation (σ ) does. Further, the fractal dimension, 
λ , of X is a more general description of data 
variability than σ .

From (6), the maximum likelihood estimator of 
λ is easily obtained as
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for nxxx ,...,, 21 , iid )(xf , Similarly, the 
cumulative distribution function (cdf ), )(xF , is:
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Equation (8) gives the probability that an 
observation X is less or equal to x.

Multifractal Formalisms
The fit provided by (8) assume that there is a 

single exponent (fractal dimension) λ  that would 

explain the global behaviour of 
x
x)(π

. In the event 

that (5) proves to be large for the FF approximation 
using only one λ̂ , we modify (8) and assume 
several fractal dimensions ( or multi fractal system). 
In this case, we assume that:
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3.0 Time Series Forecasting Models
A time series is a stochastic process {λ(t)} that 

depends on time t ε T. When T is discrete, we say 
we have a discrete time series, otherwise, the time 
series is continuous. The values of λ obtained by the 
multifractal formalisms above can be considered 
as realizations of a discrete time series. The series 
is said to be second order stationary when cov(λ(t), 
λ(t+k)) < ∞ for all k. In a separate paper, Padua(2012) 
proved that the distribution of λ(t), t= 1,2,3,... is 
approximately exponential and hence, the series is 
ipso facto second-order stationary.

For stationary time series, two popular models 
are the Autoregressive (AR(p)) model and the 
Moving Average (MA(q)) model. The pth order 
autoregressive process assumes that the current 
observation is dependent on the immediate past 
p observations:

12. λ(t) =  φ1λ(t-1) + φ2λ(t-2) +φ3λ(t-3) +...+ φpλ(t-p) +  ε(t), t= 2,3,...,n

ε(t) are iid with E(ε(t)) = 0, var (ε(t)) = σ2 for all t.

Thus, an AR(1) model simply states that the 
current observation is a multiple of the immediate 
past observation:  λ(t) =  φ1λ(t-1) λ(t) =  φ1λ(t-1) + 
ε(t).  Equation (12) can also be used as a forecast 
model when treated as multiple regression (on 
itself ) without an intercept term. Methods for 
estimating the weight parameters {φk} can be 
found in standard textbooks on time series analysis.

On the other hand, the moving average model 
of order q states that the current observation is a 
summation of weighted shocks in the qth past:

13.   λ(t) =  θ1ε(t-1) + θ2ε(t-2) +θ3ε(t-3) +...+ θpε(t-p) +  ε(t) 

The weight parameters {θk} can likewise be 
computed from the data. Unlike the autoregressive 
model, however, (13) cannot be immediately used 

as a forecast function since it involves estimation of 
past errors. However, if we note the equivalence of 
(12) and (13), we can theoretically express an MA(q) 
model as an infinite (high order) autoregressive 
process and vice versa under certain conditions. 
These conditions are called the invertibility 
conditions discussed in time series courses.

When the original time series is not stationary, 
it  may be possible to convert it into a stationary 
series through the process of differencing. Define 
the backward shift operator as: 

14.  B(λ(t)) = λ(t-1),

then the first order difference is given by:
 
15. δ(λ(t)) = (1-B)( λ(t)) = λ(t) – λ(t-1).

Higher order differenced series can be defined 
recursively as follows:

 
16.  δk(λ(t))=  δk-1[δ(λ(t))].

The new series (16) is then called an integrated 
series. In many instances, when series are 
integrated, the new differenced series will become 
stationary.

Autocorrelation Function
An analytic way to check if the series is 

stationary is to view its autocorrelation function 
(ACF).  The autocorrelation function is defined as:

A stationary series will exhibit a decaying 
autocorrelation function while a non-stationary 
series will display a non-decaying behaviour.



1 8 0 D e c e m b e rR e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l

Autoregressive Integrated Moving Average 
Model (ARIMA(p,d,q)).

A general formulation that provides flexibility  
in the formulation of a time series model is to 
combine the AR model with the MA model 
on a differenced series. This model is called 
an ARIMA(p,d,q) which consists of a pth order 
autogressive model plus a qth order moving 
average model on a differenced series of order 
d. When d= 0, q =0, we have a pure AR(p) model; 
when d=0, p =0, we have a pure moving average 
model. Other combinations are now possible.

3.0 Study Design
Using the same set of primes as Azura et al. 

(2013), we fitted two kinds of forecast functions:

Type I (Azura et al. (2013)): logλ(t) = a + b log(X(t)) 
+ c (log(X(t))2, and

Type II. ARIMA (p,d,q) ) where p, d and q are 
obtained after examination of the resulting 
autocorrelation functions.

We subdivided the available data on the 
primes less than 20,000 into five (5) subsets of data:

Data 1: The primes less or equal to 4,000

Data 2: The primes less or equal to 8,000

Data 3: The primes less or equal to 12,000

Data 4: The primes less or equal to 16,000

Data 5: The primes less or equal to 20,000

For each data set, we computed the Type I and 
Type II estimates of the fractal dimensions. The 
estimates of the fractal dimensions form the time 
series of observations {λ(t)}.

Since the number of primes less or equal to  
23,000 are available, we forecasted the 

Forecast 1: Values of X from 4001 to 4020

Forecast 2: Values of X from 8001 to 8020

Forecast 3: Values of X from 12001 to 12020

Forecast 4: Values of X from 20001 to 20020

using Type I and Type II forecast functions.

The mean absolute prediction errors (MAPE) 
were computed for each of the different forecast 
sets above. The basis for comparison is the absolute 
deviation from the actual density of primes less or 
equal to x which is available.

4.0  Results and Discussion

4.1 Data Set 1: X = 2 to X = 4000, Base data: 
log(λ(t))

Data for the density of primes less or equal to 
X, 2 < X < 4,000 were used to  generate the Azura 
forecast function. The forecast function obtained 
was:

log(lambda) = - 0.946 - 0.0589 lnX

S = 0.01826     R-Sq = 91.0%     R-Sq(adj) = 91.0%

This forecast function was subsequently used to 
generate the forecasted values of log(lambda) 
from 4001 to 4020.

The autocorrelation function for the values of 
log(lambda) revealed a non-stationary series. This 
signals the use of differencing. The graph of the 
autocorrelation function is given Figure 1.
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The graph of the differenced series, however, showed that the TACF dies out rapidly. It follows that the first 
order differenced series is a stationary time series which allows for the fitting of a time series forecast model.

The first order differenced series was 
modelled as an autoregressive process of order 
1 (ARIMA(1,1,0). Trials over higher order AR 
processes and MA process revealed no significant 

Figure 1: Autocorrelation for Raw Data

Figure 2: Autocorrelation Function for First Order Differenced Series

improvements in the predictive ability of the 
AR(1,1,0) model.  The Azura forecasts are compared 
with the ARIMA(1,1,0) forecasts in table 1.

Pa d u a ,  A z u r a ,  B o r r e s  a n d  Pa t a c
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Forecast Origin ARIMA (1,1,0) Azura Forecast Actual Density ARIMA Error AZURA Error

4000 to 4019

-1.43039

-1.43115

-1.43040

-1.43114

-1.43042

-1.43112

-1.43043

-1.43111

-1.43045

-1.43110

-1.43046

-1.43108

-1.43047

-1.43107

-1.43048

-1.43106

-1.43050

-1.43105

-1.43051

-1.43104

-1.43452

-1.43453

-1.43455

-1.43456

-1.43458

-1.43459

-1.43461

-1.43462

-1.43464

-1.43465

-1.43467

-1.43468

-1.43470

-1.43471

-1.43473

-1.43474

-1.43475

-1.43477

-1.43478

-1.43480

-1.43037

-1.43117

-1.43108

-1.43192

-1.43179

-1.43171

-1.43163

-1.43242

-1.43234

-1.43225

-1.43213

-1.43205

-1.43196

-1.43276

-1.43267

-1.43259

-1.43246

-1.43238

-1.43230

-1.43309

0.0000164

0.0000161

0.0006779

0.0007815

0.0013728

0.0005863

0.0011983

0.0013105

0.0018944

0.0011541

0.0016710

0.0009672

0.0014882

0.0016897

0.0021860

0.0015317

0.0019642

0.0013332

0.0017929

0.0020543

0.0041495

0.0033642

0.0034690

0.0026437

0.0027884

0.0028831

0.0029778

0.0022025

0.0022972

0.0024019

0.0025366

0.0026313

0.0027360

0.0019506

0.0020553

0.0021500

0.0022947

0.0023893

0.0024840

0.0017086

Table 1: Forecast Values for ARIMA (1,1,0), Azura Model and Actual Values of the Density

MEAN ABSOLUTE PREDICTION ERROR:  0.00128 0.00261
 STANDARD ERROR OF THE MEAN:  0.00014 0.00013

Comparison of the mean absolute 
prediction errors revealed that the ARIMA(1,1,0)  
outperformed  the Azura model by over 200%. An 
examination of the forecast errors revealed the 
pattern of movements of the fractal dimensions of 

the actual density of primes is synchronized with 
the movements of the  ARIMA forecasts while the 
Azura forecasts formed a smooth function way 
below the actual movements of the actual density 
fractal dimensions.
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Figure 3: Forecast Values for ARIMA(1,1,0), AZURA Forecasts and 
Actual Density

Figure 4: Autocorrelation function for raw data

Data Set 2: X = 2 to X = 8000, Base data: log(λ(t))
The Azura forecast function was similarly 

computed for 2 < X <8,000 and is provided below:
log(lambda) = - 0.960 - 0.0568 lnX
S = 0.01310     R-Sq = 94.9%     R-Sq(adj) = 94.9%

The graph of the autocorrelation function for 
log(lambda) is displayed below: The Azura forecast 
function was similarly computed for 2 < X <8,000 
and is provided below:

log(lambda) = - 0.960 - 0.0568 lnX
S = 0.01310     R-Sq = 94.9%     R-Sq(adj) = 94.9%

The graph of the autocorrelation function for 
log(lambda) is displayed below:

Pa d u a ,  A z u r a ,  B o r r e s  a n d  Pa t a c
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Figure 5: Autocorrelation Function for First Order Differenced Series

Table 2: Forecast Values for ARIMA, Azura model and Actual Density

The autocorrelation function of the first 
order differenced series displayed a rapidly 
decaying autocorrelations. This means that the 
series is now stationary allowing for a time series 
model fit. We tried out possible values of p,d, and 

q in ARIMA(p,d,q) and found that the choices p = 
1, d = 1, q = 0 remained the best possible choices. 
Thus, an ARIMA(1,1,0) was fitted on the data and 
forecast values for X = 8,001 to X = 8,020 were 
computed. The results are displayed below:

MEAN PREDICTION ERROR:            0.00337 0.03640
STANDARD ERROR OF THE MEAN:        0.00007 0.00010

A causal perusal of the autocorrelation 
function again showed high degree of non-
stationarity for which reason we took the 

first order differenced series and plotted the 
autocorrelation function of the differened series. 
The graph is shown below:
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Figure 4: ACTUAL DENSITY, ARIMA and AZURA FORECASTS

For this sample size, it appears that the Azura model outperforms the ARIMA(1,1,0) model by 
over 100% in terms of forecast accuracy. A graph of the forecasts is shown below:

Data Set 3: X =2 to X = 12000 base data: log(λ(t)) 
The Azura forecast function is provided below:

log(lambda) = - 0.736 - 0.127 lnX + 0.00517 lnX-square

S = 0.01695     R-Sq = 89.9%     R-Sq(adj) = 89.8%

while the autocorrelation function of the raw data is displayed below:

Figure 6: Autocorrelation Function of Original Data

Pa d u a ,  A z u r a ,  B o r r e s  a n d  Pa t a c
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An ARIMA(1,1,0) turned out to be the best among the choices we made to model the differenced 
series. The forecast errors incurred using this model are provided below together with the forecast 
errors of the Azura function.

MEAN ABSOLUTE PREDICTION ERROR:               0.05673             0.00026
STANDARD ERROR OF THE MEAN:                        0.00004            0.00004      

Figure 7: Autocorrelation Function of Differenced Series

X NEW Azura For. ARIMA FORECASTS ACTUAL Azura Error ARIMA Error
12001 -1.47276 -1.41634 -1.41634 0.056422 8E-07
12002 -1.47276 -1.4163 -1.4163 0.056465 8E-07
12003 -1.47277 -1.41634 -1.41626 0.056507 7.84E-05
12004 -1.47277 -1.4163 -1.41622 0.05655 8.16E-05
12005 -1.47277 -1.41634 -1.41622 0.056552 0.000118
12006 -1.47277 -1.4163 -1.41618 0.056595 0.000122
12007 -1.47278 -1.41634 -1.41614 0.056637 0.000197
12008 -1.47278 -1.4163 -1.41614 0.05664 0.000163
12009 -1.47278 -1.41634 -1.41609 0.056692 0.000246
12010 -1.47278 -1.4163 -1.41605 0.056735 0.000254
12011 -1.47279 -1.41634 -1.41605 0.056737 0.000286
12012 -1.47279 -1.4163 -1.41601 0.05678 0.000294
12013 -1.47279 -1.41633 -1.41597 0.056822 0.000365
12014 -1.47279 -1.41631 -1.41597 0.056825 0.000335
12015 -1.4728 -1.41633 -1.41593 0.056867 0.000404
12016 -1.4728 -1.41631 -1.41589 0.05691 0.000416
12017 -1.4728 -1.41633 -1.41589 0.056912 0.000444
12018 -1.4728 -1.41631 -1.41585 0.056955 0.000456
12019 -1.47281 -1.41633 -1.41581 0.056997 0.000523
12020 -1.47281 -1.41631 -1.41581 0.057 0.000497

Table 3: Forecast Errors of ARIMA, Azura Models

Again, the autocorrelation function for the 
original raw data, log(lambda), displayed non-
stationarity with the autocorrelations displaying 

no indications of decaying. The autocorrelation 
function of the differenced series is shown 
below:
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The ARIMA(1,1,0) model incurred a lower 
mean absolute prediction error than the Azura 
model. In fact, its accuracy is patently more 
pronounced than the Azura prediction.    

Data Set 4: X =2 to X=16000, base data: logλ(t)       
The Azura forecast function is listed below:

Since the original raw data displayed non-stationarity, we differenced once to obtain the 
autocorrelation function below:

Figure 8: Autocorrelation Function of Raw Data

Figure 9: Autocorrelation Function of Differenced Series

log(lambda) = - 0.269 - 0.276 lnX + 0.0164 lnX-
square

S = 0.03847     R-Sq = 50.3%     R-Sq(adj) = 50.3%

The autocorrelation function of the original 
raw data is displayed below:

2 0 1 3 Pa d u a ,  A z u r a ,  B o r r e s  a n d  Pa t a c

MEAN ABSOLUTE PREDICTION ERROR:               0.05673             0.00026
STANDARD ERROR OF THE MEAN:                        0.00004            0.00004      
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The differenced series is now stationary and 
so we fitted once again an ARIMA(p,d,q) model 
using the Box-Jenkins approach. The best model 

Without doubt, the ARIMA model remained the more reasonable choice for forecasting the fractal 
dimensions of the density of primes. This is supported by the very small mean absolute prediction error 
for the ARIMA forecasts.
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still turned out to be the ARIMA(1,1,0) model. 
The forecasts and forecast errors are displayed 
below:

NEW X AZURA FORECAST ARIMA FORECAST DENSITY NEW AZURA error ARIMA Error
16001 -1.40394 -1.32761 -1.32757 0.076374 3.92E-05
16002 -1.40394 -1.32757 -1.32757 0.076371 8E-07
16003 -1.40394 -1.32761 -1.32754 0.076399 6.84E-05
16004 -1.40394 -1.32757 -1.32754 0.076396 3.16E-05
16005 -1.40393 -1.32761 -1.3275 0.076433 0.000108
16006 -1.40393 -1.32757 -1.3275 0.076431 7.23E-05
16007 -1.40393 -1.32761 -1.32746 0.076468 0.000147
16008 -1.40393 -1.32757 -1.32746 0.076466 0.000113
16009 -1.40392 -1.32761 -1.32742 0.076503 0.000186
16010 -1.40392 -1.32757 -1.32742 0.0765 0.000154
16011 -1.40392 -1.32761 -1.32738 0.076538 0.000226
16012 -1.40392 -1.32757 -1.32738 0.076535 0.000194
16013 -1.40391 -1.3276 -1.32738 0.076533 0.000225
16014 -1.40391 -1.32758 -1.32735 0.07656 0.000225
16015 -1.40391 -1.3276 -1.32735 0.076557 0.000254
16016 -1.4039 -1.32758 -1.32731 0.076595 0.000266
16017 -1.4039 -1.3276 -1.32731 0.076592 0.000294
16018 -1.4039 -1.32758 -1.32727 0.07663 0.000306
16019 -1.4039 -1.3276 -1.32727 0.076627 0.000333
16020 -1.40389 -1.32758 -1.32723 0.076665 0.000347

Table 4: Forecast Errors ARIMA, AZURA models

MEAN ABSOLUTE PREDICTION ERROR:                 0.07651     0.00018
STANDARD ERROR OF THE MEAN:                         0.00002     0.00002
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Figure 10: Autocorrelation Function of Raw Data

Pa d u a ,  A z u r a ,  B o r r e s  a n d  Pa t a c

Figure 9: ARIMA AND AZURA FORECAST ERRORS (DENSITY & ARIMA COINCIDE)

Data Set 5: X = 2 to X = 20000
Finally, the Azura forecast function is computed for the largest data set. This is given below:

log(lambda) = 0.146 - 0.403 lnX + 0.0256 lnX-square

S = 0.04826     R-Sq = 50.3%     R-Sq(adj) = 50.3%

2 0 1 3
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Figures 10 and 11 show that the differenced 
series is stationary while the raw data is non-
stationary even for this larger sample size. We fitted 

an ARIMA(1,1,0) model to the differenced series to 
obtain the following forecast errors:
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NEW X AZURA FORECAST ARIMA FORECAST DENSITY NEW AZURA error ARIMA Error
20001 -1.33428 -1.32761 -1.32757 0.006706 3.92E-05
20002 -1.33427 -1.32757 -1.32757 0.006701 8E-07
20003 -1.33427 -1.32761 -1.32754 0.006726 6.84E-05
20004 -1.33426 -1.32757 -1.32754 0.006721 3.16E-05
20005 -1.33426 -1.32761 -1.3275 0.006755 0.000108
20006 -1.33425 -1.32757 -1.3275 0.00675 7.23E-05
20007 -1.33424 -1.32761 -1.32746 0.006785 0.000147
20008 -1.33424 -1.32757 -1.32746 0.00678 0.000113
20009 -1.33423 -1.32761 -1.32742 0.006815 0.000186
20010 -1.33423 -1.32757 -1.32742 0.006809 0.000154
20011 -1.33422 -1.32761 -1.32738 0.006844 0.000226
20012 -1.33422 -1.32757 -1.32738 0.006839 0.000194
20013 -1.33421 -1.3276 -1.32738 0.006834 0.000225
20014 -1.33421 -1.32758 -1.32735 0.006859 0.000225
20015 -1.3342 -1.3276 -1.32735 0.006853 0.000254
20016 -1.3342 -1.32758 -1.32731 0.006888 0.000266
20017 -1.33419 -1.3276 -1.32731 0.006883 0.000294
20018 -1.33419 -1.32758 -1.32727 0.006918 0.000306
20019 -1.33418 -1.3276 -1.32727 0.006913 0.000333
20020 -1.33418 -1.32758 -1.32723 0.006947 0.000347

Table 6: Forecast Errors of Azura and ARIMA Models

MEAN ABSOLUTE PREDICTION ERROR:        0.00682 0.00018
STANDARD ERROR OF MEAN:         0.00002  0.00002

Figure 11: Autocorrelation Function of Differenced Series
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Tabular values show that the ARIMA model is 
the better choice for prediction purposes.

In summary, we have demonstrated that the 
Azura function beats the ARIMA(1,1,0) in only one 
of five instances. The ARIMA model is the better 
option for forecasting the fractal dimension of the 
density of primes less or equal to a positive integer 
x.
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