
4 1

A Generalized Bootstrap Technique for Dependent Observations

1Consultant , 
2, 3University of San Jose Recoletos

1R o b e r t o  N .  Pa d u a  2M a r k  S .  B o r r e s  a n d  3R a n d y  K .  S a l a z a r

Abstract

The bootstrap method for re-sampling essentially obtains the re-sampled observations 
from the empirical distribution function of the original data. The method relies heavily 
on the assumption of independence of the observations (iid). When the original data are 
correlated, then the usual bootstrap technique may fail to give appropriate re-sampled 
data. The present study proposes a new method for generating bootstrap observations 
from dependent observations knowing the original correlation structure of the data. 
Independent and identically distributed initial bootstrap samples are obtained from the 
empirical cumulative distribution function of the data. The bootstrap re-samples from the 
original data are obtained from the space generated by the initial bootstrap subsamples. 
It is shown that the  correlation structure of the bootstrap samples obtained is the same 
as the original data. Simulations show that the relative error and the mean-squared error 
decrease with increasing sample size. However, both types of error increase with increasing 
dimensionality of a multivariate normal distribution

Keywords and Phrases: bootstrap, dependent observations, subspace, Cholesky’s method, 
LU-Decomposition

1.0  Introduction
Jackknife and bootstrap re-sampling 

procedures have gained widespread popularity 
since the seminal paper of Efron (1987) as methods 
for generating random samples “without getting 
fresh observations”. Essentially, the methods 
obtain a “new” set of observations from a given 
random sample x1, x2, … ,xn by re-sampling 
from these observations. In the Jackknife method, 
sample of size k < n can be generated by obtaining 
all possible sub-sample of size k from n i.e. (nk) 
possible jackknife sub-samples. In the bootstrap 
method, one sets up the empirical cumulative 
distribution function Fn(x) of the sample x1,…,xn 
and uses this empirical cdf to generate  “new” 
samples of any size.These methods are particularly 
useful when the available information is limited to 

the fixed random sample x1,…,xn and it is desired 
to study the behavior of an estimator Tn of a 
parameter θ, viz mean, variance and bias of Tn for 
a fixed sample size k<n. However, both methods 
apply only when x1, x2,…,xn are assumed iid 
(independent and identically) distributed F(x). 
When either the assumption of independence or 
identical distribution is violated, these re-sampling 
procedures will fail.

When the observations are correlated, a 
direct application of the bootstrapping technique 
destroys this correlation structure, i.e. the 
bootstrap sample will become independent. 
Several modifications to the bootstrap procedure 
had been proposed in the past to deal with various 
types of  structured correlations among the 
observations. Chen (2003) proposed a bootstrap 
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procedure for - mixing processes; Lomangcaya 
(2010) studied the situation when the observations 
obey an AR (1) model.

The dependence structure of the data could, 
however, be quite general and not necessarily 
following an AR model nor a - mixing process. More 
specifically, suppose that the data X = (x1, x2…xn) 
have:

	 (3) cov (x) = Σ

where Σ is an nxn positive- definite matrix. We 
are asked to obtain bootstrap samples Y = (y1, y2…
yn) such that the covariance structure is preserved:

	 (4) cov (Y) = cov (X) = Σ.

The problem is complex and there is no 
obvious way of approaching it.

At the outset, we see that there are                 	
unknown parameters  from the covariance matrix 
Σ, and with only n observations, these parameters 
are clearly not estimable. This paper is concerned 
with the more general problem of obtaining a 
bootstrap sample from a set of observations that 
have a general covariance structure Σ. 

2.0 Literature Review
The empirical cdf Fn(x) is used as a natural 

estimator of F(x) for each x. When the observations 
are independent, the quantity nFn(x) is a binomial 
random variable with parameters n and p = F(x). 
Also, σ2

For large n, the Strong Law of Large Numbers 
(SLLN) tells us that:

	 (5)

Not only is this true, the Glivenko-Cantelli 
theorem also shows that:

	 (6)	

An estimate of just how close Fn(x) is to F(x) 
was in fact, provided by Dvoretsky – Kiefer – 
Wolfwitz (1956):

	 (7)	

The unspecified constant C was later obtained 
by Pascal Massart (1990) to be:

	 (8)	

This strengthens the Glivenko-Cantelli 
Theorem by quantifying the rate of convergence 
as n→ ∞ .

The Massart (1990) result is useful when, for 
example, we wish to determine just how large a 
sample n is required to estimate F(x) to with	
in  with at least 90% confidence. This turn out to be 
n  by using the Massart (1990) bound.

Dependent Observations
	 Suppose now that                          are 

identically distributed dependent observations 
with 	                               for as long as 		
      the observations 		   can still be 
used to construct the estimator                    However
, the sample size n will be larger than the sample 
size needed to achieve the same level of accuracy 
when they are independent. To see this, treat the 
empirical cdfFn(x) as an average of the observations 
I(xi),…, I(xn). Then, by the Chebychev’s inequality:

(9)

However,  
Thus,

J u n eR e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l

Fn(x) 
!

 F(x) as n → ∞.	
  

𝜎𝜎! = 𝐹𝐹 𝑥𝑥 (1− 𝐹𝐹 𝑥𝑥 ,          𝜇𝜇 = 𝑛𝑛  𝐹𝐹(𝑥𝑥).	
  

𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥 F! x − F(x) → 0  𝑎𝑎𝑎𝑎  𝑛𝑛 → ∞. 

Pr 
𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥 F! x − F(x) > 𝜀𝜀 ≤   𝐶𝐶	
  

Pr 
𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥 F! x − F(x) > 𝜀𝜀 ≤   2𝑒𝑒!!!!!                       ∀𝜀𝜀 > 0.	
  

𝜀𝜀 =
1
10	
  

x1, x2, …,xn 	
  

x1, x2, …,xn 	
  
𝜎𝜎!" = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥!𝑥𝑥!) ≠ 0. 	
    𝜌𝜌!" ≠ 1  𝑜𝑜𝑜𝑜  𝜌𝜌!" ≠ −1,	
  

 𝜌𝜌!" ≠ 1  𝑜𝑜𝑜𝑜  𝜌𝜌!" ≠ −1,	
  

F! x . 	
  

Pr F! x − F(x) > 𝜀𝜀 ≤ 1−   𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝐹𝐹 𝑥𝑥 )/𝜀𝜀!                        ∀𝜀𝜀 > 0.	
  

Var(Fn(x)) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐼𝐼(𝑥𝑥𝑥𝑥))!
! /n2 + 2 𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼 𝑥𝑥𝑥𝑥 , 𝐼𝐼 𝑥𝑥𝑥𝑥 )!!! /n2 . 	
  

( )n(n+1)
2
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(10)     			        , which we 
can use to solve for n. Obviously, this sample size 
n will be larger than when the second term on 
the left hand side of the inequality (10) were not 
present.

Bootstrapping Based on Autoregressive 
Models

We review Lomangcaya’s (2010) procedure for 
generating bootstrap samples for an autoregressive 
process. Consider a first-order autoregressive 
process:

(7) Xt = φ1Xt-1 + εt, where εt are iid with zero 
mean and constant variance σ2 .

We can , of course, consider a Gaussian process 
regression and then generate replicates of the 
process. We shall, however, use a simpler bootstrap 
regression approach as follows:

We compute the variance and covariance of 
the process as follows:

(8) 	 var(Xt) = ν(0) = E(φ1Xt-1 + εt)(φ1Xt-1 + εt,) = 
φ1ν(0) + σ2, 

Hence:      (1-φ1)ν(0) = σ2 or   ν(0) = σ2/ (1-φ1).

Similarly,

(9) 	 ν(1) = E(XtXt-1) = E(φ1Xt-1 + εt )(Xt-1) = φ1ν(0),

Hence:     ν(1)  =   φ1σ2/ (1-φ1) and more 
generally:

(10) 	 ν(k) = φ1
kσ2/ (1-φ1).

The autocorrelation function can be easily 
derived from (10):

(11) ρk = φ1
k  for k = 1,2,…

We now attempt to fit a regression model 
using Y = Xt and X = Xt-1.

In order to avoid the regression constant, 
center the data so that Yt = Xt – μt. The following 
steps will be followed:

1. Fit the model and retain the fitted values 
and the residuals . 

2. For each pair, (xi,yi), in which xi is the 
(possibly multivariate) explanatory variable, 
add a randomly resampled residual, , to the 
response variable yi. To resample from the 
residuals (which are now serially correlated), use 
the bootstrap algorithm developed in Section 3. 
In other words create synthetic response variables 

where j is selected randomly from 
the list for every i. 

3. Refit the model using the fictitious response 
variables , and retain the quantities of interest 
(often the parameters, , estimated from the 
synthetic ). 

Repeat steps 2 and 3 as many times as 
bootstrapped subsamples are desired.

Sample Computations:

The following data were generated using 
Minitab. We performed the usual regression 
analysis on Xt and Xt-1. Table 1 shows the data 
(Xt), data at lag 1 (Xt-1), the fitted values of Xt, the 
residuals and one bootstrap sample.

1/n [F(x)(1-F(x)] + 2/n2 𝜎𝜎𝜎𝜎𝜎𝜎!,! ≤ αε2	
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3. The Proposed Bootstrap Method for 
General Data Dependentce Structure

Let (x1, x2,…,xn)be identically distributed, F(x), 
but dependent observations with an unknown 
covariance structure Σ such that ρij≠ 1 or -1. Without 
loss of generality, we assume that the observations 
are standardized so that  		                	  	
Form the empirical distribution function Fn(x) as 
in (1) and generate the independent bootstrap 
sample			   . 

Let:

	 (9) B = 

be the set of n- dimensional bootstrap samples 
generated from Fn(x). Consider the subspace D of 
B where:

	 (10) D = 
		

of constant multiples of each element of the 
vector 		     . We attempt to construct 
bootstrap samples that preserve Σ based on D by 

finding appropriate values . More succinctly, we 
want to find replicates of the original observations 
that preserve the covariance structure.

In order to fix the ideas, consider the problem 
of finding replicates of (x1,x2) where the correlation 
ρ12 = corr(x1,x2). We proceed as follows: Generate 
two independent bootstrap samples x1* and x2* 
(note that in this case, the values of x1* and x2* may 
be x1 or x2 only). 

Form:

(11) y1 = a1x1* + a2x2* and 
y2 = b1x1* + b2x2*.

We can, without loss of generality, assume that 
var(x1) = var(x2) = 1 and  E(x1) = E(x2) = 0. 

From (11), we find that:

(12) corr(y1,y2) = a1b1 + a2b2 = corr(x1,x2) = ρ12

var(y1) = a1
2 + a2

2 = 1 = var(x1) , and
var(y2) = b1

2 + b2
2 = 1 = var(xt).

These now mean that we need to solve the 
system of non-linear equations:

(13)	a1b1 + a2b2 =  ρ12

	 a1
2 + a2

2 = 1
	 b1

2 + b2
2 = 1

From the second equation, let a2 = 	    and 
arbitrarily set b1= 0 (so that b2 = 1), then:

(14)  
Hence,

(15) 
	

In order to generalize to the n-dimensional 
case, we need to realize that there are n2 unknown 
constants while there are  n(n-1)/2 equations 
relating  covariance of the y’s to the original x’s plus 

J u n eR e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l

𝐸𝐸 𝑥𝑥! = 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥! = 1	
  

𝑥𝑥!∗, 𝑥𝑥!∗,… , 𝑥𝑥!∗ . 	
  

= {(𝑥𝑥!∗, 𝑥𝑥!∗,… , 𝑥𝑥!∗ ) / 𝑥𝑥!∗    𝑎𝑎𝑎𝑎𝑎𝑎  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠s}	
  

{(y1, y2, … ,yn)/ yi =∑aixi*, 𝑎𝑎! ∈ 𝑅𝑅}	
  

𝑥𝑥!∗ ,… , 𝑥𝑥!∗ 	
  

 a1 = 1− 𝜌𝜌!"!   , a2 = ρ12 , b1 = 0, b2 = 1	
  

)  y1 = 1− 𝜌𝜌!"!  x1* + ρ12 x2* 

y2 = ρ12x2*	
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n equations for the variances  or a total of n(n+1)/2 
equations.  Thus, we have an over-determined 
system.  We can therefore set the values of some 
constants arbitrarily to zero so that the number of 
equations will equal to the number of unknowns. 
To this end, we set:

(16)
	
	
			     
	

which can be conveniently written in matrix 
form as:

(17)  Y = AX* where A =  		  is an 
upper triangular matrix.

It follows that:

(18)  ∑ = cov(Y) = cov(X) = Acov(X*)A’ = AA’ 
since cov(X*) = I.

If cov (X ) = ∑, then equation (18) simplifies to: 
∑ = AA’. We also note in passing that since the 
original observations had been standardized, 
cov(X) = corr(X) = ρ. Equation (18) can now be 
solved for the entries of the upper triangular matrix 
A. We go back to this computational problem later. 
For now, we state the following main theorem 
for our generalized bootstrap for dependent 
observations which is proved by Equation (18).

Theorem 1.Let            		  be identically 
distributed but dependent observations from F(x). 
Let		    be n independent bootstrap 
samples from Fn(x), the empirical cdfof 	  . 
Then, the bootstrap sample 		   where 	
                           preserves the correlation structure Σ 
of the original observations where aij are solutions 
to Equation(18).

We now go back to the computational linear 
algebra problem of decomposing a positive-
definite matrix into a lower triangular matrix (A) 
times an upper triangular matrix (A’). In linear 
algebra, the LU decomposition attempts to write a 
matrix as the product of a lower triangular matrix 
and an upper triangular matrix. The decomposition 
∑ = AA’ is called the Cholesky decomposition. The 
Cholesky decomposition will always exists and is 
unique. Furthermore, it is known that computing 
the Cholesky decomposition is far more efficient 
and numerically more stable than computing the 
general LU decomposition problem. The method 
was discovered by André-Louis Cholesky(1948)  
for real matrices and gives an example of a square 
root of a matrix. When it is applicable, the Cholesky 
decomposition is shown to be roughly twice as 
efficient as the LU decomposition for solving 
systems of linear equations.

The Cholesky-Banachiewicz and Cholesky-
Crout algorithms

If we write out the equation ∑= A  =LL*, 
The Cholesky-Banachiewicz and Cholesky-

Crout algorithms
If we write out the equation ∑= A  =LL*,
we obtain the following formula for the entries 

of L:

So we can compute the (i, j) entry if we know 
the entries to the left and above. The Cholesky-
Banachiewicz algorithm starts from the upper left 
corner of the matrix L and proceeds to calculate 
the matrix row by row.

2 0 1 4 Pa d u a ,  B o r r e s  a n d  S a l a z a r

y1 = a11x1* + a12x2* +a13x3*  … + a1nxn* 
y2 = a22x2* + a23x3* +…+a2nxn*	
  
y3 = a33x3* +…+a3nxn*	
  

yn = annxn*	
  

= 
𝑎𝑎!! ⋯ 𝑎𝑎!!
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑎!!

	
  

(x1, x2,…,xn) 	
  

 𝑥𝑥!∗, 𝑥𝑥!∗ , … , 𝑥𝑥!∗ 	
  
(x1,…,xn).	
  

(y1, y2, … ,yn) 	
  
𝑦𝑦! = 𝑎𝑎!"!

! xj* 	
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covariance structure of the x’s and let Σy denote 

the covariance of the bootstrap sample yi’s. We 

look at

	 (17) 

as a measure of goodness of the sub-sampling 

procedure.

The usual definitions of the matrix norms 	

 			   are:

	 (18) 		  (Column sum maximum)

			   (Row sum maximum)

			 

We shall adopt the following measure of 

accuracy:

	 (19) 

Since the matrix norms obey the following 

relation:

	

	 (20)  .

It follows that we can adopt. as our norm.

4.0 Simulation Results
We generated  observations from a 3x3 

multivariate normal distribution with an 

equicorrelated structure using different sample 

sizes n = 10, 20, 30. For each sample size, we did 

1000 runs and computed the relative error (RE) 

and Mahalanobis distance for each. The results are 

shown in Table 1. 

J u n eR e c o l e t o s  M u l t i d i s c i p l i n a r y  R e s e a r c h  J o u r n a l

MATLAB Syntax for Cholesky Decomposition
cholcov-Cholesky covariance decomposition

Syntax

	 T=cholcov(SIGMA) 

	 [T,num] = cholcov(SIGMA) 

	 [T,num] = cholcov(SIGMA,0)

Description

T = cholcov(SIGMA) computes T such that 

SIGMA = T’*T. SIGMA must be square, symmetric, 

and positive semi-definite. If SIGMA is positive 

definite, then T is the square, upper triangular 

Cholesky factor. If SIGMA is not positive definite, T 

is computed from an eigenvalue decomposition of 

SIGMA. T is not necessarily triangular or square in 

this case. Any eigenvectors whose corresponding 

eigenvalue is close to zero (within a small tolerance) 

are omitted. If any remaining eigenvalues are 

negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number 

num of negative eigenvalues of SIGMA, and T is 

empty if num is positive. If num is zero, SIGMA is 

positive semi-definite. If SIGMA is not square and 

symmetric, num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num 

equal to zero if SIGMA is positive definite, and 

T is the Cholesky factor. If SIGMA is not positive 

definite, num is a positive integer and T is empty. 

[...] = cholcov(SIGMA,1) is equivalent to [...] = 

cholcov(SIGMA).

Measure of “Goodness” 

	 The  test for determining whether or 

not the yi’s forms a “good enough” bootstrap 

replacement of the xi’s is to assess how well Σx 

has been reproduced by the yi’s. Let Σx  be the 

Σ!−Σ! !
= 𝑑𝑑!           , 𝑝𝑝 = 1,2  𝑎𝑎𝑎𝑎𝑎𝑎  ∞	
  

𝐴𝐴 !  , p = 1, 2, ∞	
  

𝐴𝐴 ! = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎!"
!!!!!

	
  

𝐴𝐴 ! = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎!"
!!!!!

	
  

𝐴𝐴 ! = 𝜆𝜆!"#       𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒      𝜆𝜆!"# = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜  𝐴𝐴  

RE =
Σ!−Σ!
Σ!

x  100%	
  

 𝐴𝐴 ! =    𝐴𝐴 ! 𝐴𝐴 ! 	
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We note that both the relative error and the mean-squared error monotonically decrease with 

increasing sample size.

Next, we generated observations from a 4 x 4 and a 5 x 5 multivariate normal distribution with the 

same sample sizes and observed the relative errors and mean-squared errors for comparison purposes. 

The results are shown in Table 2. 
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For one type of multivariate normal 

distribution, both types of errors decrease 

monotonically with increasing sample size. 

However, when these figures are compared across 

the different distributions, we see that the errors 

increase with increasing dimensionality of the 

multivariate normal random variables.

5.0 Conclusions
The decomposition of the covariance matrix 

of dependent random observations using the 

LU-Decomposition technique or the Cholesky 

method yields a practical approach for obtaining 

bootstrap samples from a given set of dependent 

observations.
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