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INTRODUCTION

Many mathematicians are actively exploring special functions and their various extensions and
generalizations, including Frobenius-Euler-Genocchi Polynomials, Bivariate (p, q)— Bernoulli-Fibonacci
Polynomials, Bivariate (p, q}- Bernoulli-Lucas Polynomials, Apostol-Type Frobenius-Euler Polynomials, g

— Trigonometric Functions, the reverse Fibonacci means, (p, q) — Fibonacci Polynomials, and (p,q)-Lucas
Polynomials (Alam et al., 2023; Elizalde & Patan, 2022; Guan et al., 2023; Rao et al., 2023; Zhang et al,, 2023). These
unique mathematical constructs display fascinating properties, particularly explicit formulas with practical
computer modeling applications.

Special polynomials and their generating function play a crucial role in various fields of mathematics,
including probability, statistics, mathematical physics, and engineering. Polynomials are particularly valuable
because they can easily undergo well-established operations such as differentiation and integration, making
them valuable tools for addressing real-world problems. Over recent years, many researchers have focused on
the generating functions of special polynomials, examining their congruence properties, recurrence relations,
computational formulas and symmetric sums (Araci & Acikgoz, 2012; Muhiuddin, Khan, & Al-Kadi, 2021).
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In recent studies, T. Kim and D. S. Kim (2018), T. Kim et al. (2015), T. Kim (2017), T. Kim and D.S.
Kim (2020), T.Kim et al. (2020), Khan, Duran, etal. (2023), Khan, Alatawi, etal. (2023), Khan (2023), Khan
and Kamarujjama (2023), Khan (2018), Muhiuddin, Khan, and Al-Kadi (2021), Muhiuddin et al. (2022)
,and Muhiuddin, Khan, & Younis (2021), have actively explored degenerate versions of special numbers
and polynomials. This approach introduces a robust framework for defining degenerate forms of special
numbers and polynomials, which have significant applications. Degenerate polynomials, in particular,
find utility in finite difference theory, analytic number theory, classical analysis, and statistics. Beyond
these domains, special functions also emerge in communication systems, quantum mechanics, nonlinear
wave propagation, electric circuit theory, and electromagnetic theory.

In this paper, we adopt the standard notations: N = {1,2, ....},N, = {0,1,2, ...} = N U {0},
and Z~ = {—1, -2, ... }. Additionally, Z denotes the set of integers, R represents the real numbers,
and C denotes the set of complex numbers.

The classical Bernoulli B,,(x), Euler E, (x), and Genocchi G, (x) polynomials are defined
by the following generating functions:

P e*t = ZBn(x)— ,|t] < 2m,
2 xt
et+1e =Z n(x)—, |t] < m,
nso on
:ZG @—, ltl<m (1.1
n=0

as seen in Carlitz (1956), Eastham (1964), T. Kim and D. S. Kim (2018), T. Kim et al. (2015),
and T. Kim et al. (2020).

The classical Frobenius -Euler polynomials H,(la) (x;u) of order a, for u € C with u # 1,
are given by the generating functions:

1—u\% - t"
_ (@),
(et — u) eXt = EO H," (x;u) ot (1.2)
n=

(Araci & Acikgoz, 2012; Carlitz, 1979; Khan, 2023; Khan & Kamarujjama, 2023). In the special
case where x = 0, H,(la) (w) = H,(l“)(O ; u) are referred to as the Frobenius -Euler numbers of order
a. For a=1, H,Sl) (x;u) = Hp(x,u) are called the Frobenius-Euler polynomials, and

H,(l“) O;u) = h,(l“) (u) represent the Frobenius-Euler numbers of order a. Substituting u = —1 into
(1.2) yields H, (x; —1) = E,;;(x), known as the Euler polynomials (Janson, 2013; T. Kim & D. S.
Kim, 2020; Muhiuddin et al.,, 2022; Muhiuddin, Khan, & Al-Kadi, 2021).

The polylogarithm function, for k € Z, is defined by:

[o'e]
n

Liy(x) = Z % <1, (1.3)

n=1
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(Eastham, 1964; Kaneko, 2025). For k = 1, this simplifies to:
[oe] xn
Li;(x) = Z — = —log(1 — x).
e R

In 2017, Kurt introduced the poly-Frobenius-Euler polynomials as:

1—w)liy(1—et - t"
(1 = wLi( ) gxt _ Z HAP G ) — (1.4)
n=0 )

t(et —u)

When x = 0, H,(lk) w) = H,(lk)(O ; u) are referred to as the poly-Frobenius-Euler numbers.

The degenerate exponential function for nonzero A € R (or C) is given by:

X 1
e; () =1+ 17, e(t) =1Q+ )7 (1.5)
(D.S.Kim & T. Kim, 2019; T. Kim & D. S. Kim, 2018). This can be expanded as:
[0 tn
F© =) na, (1.6)
n=0 '
(Khan, 2018; Kurt & Simsek, 2013), where (x),, ; is the falling factorial. As A — 0, ey’ (t)

approaches the standard exponential function e*t.

Kim etal. (2015) introduced degenerate Frobenius -Euler polynomials with the generating
function:

1—u x ¢ t"
Y A+ a)i= z o Cxl) = (1.7)
(1427 —u = n

For x = 0, hy, ;(u) = hy, ;(0|u) are called degenerate Frobenius -Euler numbers.

T.Kim and D. S. Kim (2020) introduced the polyexponential function, the inverse of the
polylogarithm, defined by:

le
n=0
For k = 1, this becomes:
le
Ei;(x) = = e* -1 (1.9)
n=0

Khan (2023) further introduced degenerate poly-Euler polynomials, defined by



RJ

RMRJVol. 13 no. 1 June 2025
MULTIDISCIPLINARY RESEARCH JOURNAL

Ei, (log(1 +t))
tlex(®) +1)

o tTL
k
el (t) = Z E,S,j(x)m. (1.10)
n=0
when x = 0, E,(lkl) = Er(lkz) (0) are called the degenerate poly-Euler numbers.

The Stirling numbers of the first and second kinds are given by the following well-known
relations:

n
(O = ) Si(n,Dx, (1.11)
=0
n
)" = Z s2(n, Dxy
=0
From (1.11), it is easily to see that
1 RN tn
= (log(1 + £))¥ = z 5,00 — (1.12)
=0

The degenerate Stirling numbers of the first and second kind, denoted by S; ,(n, k) and
Sa,p (n, k), were defined in (Kim et al,, 2015; T. Kim, 2017; T. Kim & D. S. Kim, 2020; T. Kim et
al., 2020) as coefficients of the following generating functions:

log(1+ D)% (n -1} & n
(Og( - )) — Esl,p(n,k)m’ w: ZSZ,p(n)k)Ep (113)
n=0 n=0
where
log, (ep(t)) = ep(log, (1)) =t (1.14)
When p = 0,

limS,; ,(n, k) = S;(n, k), limS,,(n,k) =S,(n, k).
p—>0" " p—0" %

In this paper, we construct the type 2 degenerate poly-Frobenius-Euler polynomials and
numbers using the polyexponential function, deriving several properties and relationships for these
polynomials. In the final section, we defined Type 2 degenerate unipoly-Frobenius-Euler
polynomials using the unipoly function explicit expressions and properties of these polynomials.

Type 2 Degenerate Poly-Frobenius-Euler Polynomials

Let A, u € Cwithu # 1 and k € Z, by using the polyexponential function, we consider the
type 2 degenerate poly-Frobenius-Euler polynomials are defined by means of the following
generating function.
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Eip(log(1+ (1 -wt)) , = - N
ORI Z; Hpp 50 2 2.1)

In the special case, x = 0, Hr(lka) (w)=H (k)(O; u) are called the type 2 degenerate poly-
Frobenius-Euler numbers.

For k = 11in (2.1), we get

—u

- (t) — e () = Z Hoa (65 u) (see [16]) (2.2)

where H,, ; (x; u) are called the degenerate Frobenius-Euler polynomials. Obviously,

_ (Bix(log(1+ (1 — W)\ O, T
fim Jei© = 2 im0
n:

t(ey(t) —uw)
_Eig(log1+(1-wt)) . . N Gy
- D C0D) vy _;Hn (). (2.3)

Thus, by (2.1) and (2.2), we have
lim B9 (G w) = i (6w),  (n=0) (23)

where H,(lk) (x; u) are called the type 2 poly-Frobenius-Euler polynomials.

Theorem 2.1. For n = 0, we have

n

( _u)l+1
; ZWS1(Z+1m+1)(x)n e
- Z ( H(k)ma(x U)(l)ml H(k)(x u)
m=0

Proof. From (2.1), we have

[00)
n

EBip(log(1+ (1 —wt)) , = o o G, .t
TG ea(t)—ez(t);l‘ln () —u Y B ()=

= i(1)m_A%Z HE) (x; u) iH“‘)(x u)—
m=0 n=

n=0

n=0
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= z Z H(k)ml(x W (D — uHY (6 w) ;—T: (2.4)
n=0 \m=0
On the other hand,
Ei;(log(1 + (1 —uw)t)) ex( z( ) t" (log(l +(1-we)™
t(ey(t) —w) ei Al (m —1)!'mk

l=m+1

t(
o' 0o l
tn 1 ( _ )l+1t
(S (5 o mstsime )
n=0 =0 0

n l
1 1-— +1 n
Z (7) Z W%(l +1m+ 1D()n-i2 %)% (2.5)

o n\ 1 o _ )l
:<Z(x)n’/1%)— W Z 51 (lm+1)( U) )

n
Comparing the coefficients of % on both sides, we get the result.m

Theorem 2.2. Forn = 0, we have

wH“‘)( ) y HE @O,
;E; X, u 1;i;( ) 1 u)x 2

Proof. From (2.1), we have

> " (Eip(log(1+ (1 —wt))\
2 iR = (Mg g )4 ®

n=0

ZH“”(x W Z( Omi

n

=3 () HE s @@ 26

Therefore, by (2.1) and (2.6), we require at the desired result. m
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Theorem 2.3. For k € Z and n = 0, we have

l
1 S, (l+1, D1 —u)t
=Y (1)) e
=0 m=0

1)k-1 [+1

Proof. 1t is proved by using (1.7), (1.11) and (2.1) that

o t"  /Eip(og(1 + (1 — w)t))
PACOES ( t(e,(0) — )

) e; (t)

n=0

e o (og(l+(L—wr)™
T tle(t) —w) = (m —1)!'mk

e~ (log(1+ (1—w)) ™
THa®-wi4 T mim+ D

__&a®
~ t(ea(t) - u) L (m+ 1)k 1 z Si(m,m+1)

n=m+1

SSn+1,m+ 1A —uw)"t"

e(t) ()Z( +1)klz n+1 n!
o) co l

3 N 1 S;U+1,m+ 1)1 —u)tt

- Z;H""l(x’ wﬁ; HZO (m + 1)k-1 1+1 n!

0 l
1 S (l+1,m+1)(1—u)l tn
=Z Z l)Z:O(m+1)k—1 : I+1 Hy_ lA(x u) _l

n=0

(- u)t)”

By comparing the coefficients of £ on both sides, we complete the proof. m
n!

Corollary 2.4. For k € Zand n = 0, we have

n l
SSU+1,m+ 1A -t
(k) _ 1
Hop (W) = Z Z (m+ 1)k 1 [+1 H-12 ().

Corollary 2.5. For n =0, we have

2.7)
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n

!
n SU+1,m+1DA-uw)
s = ) (1) ), s e
=0 m=0

Corollary 2.6. For n =0, we have

n

!
n S;(U+1,m+1)2!
En,/l(x) = Z (l) Z ! I+ 1 En—l,l(x)-
=0 m=0

In particular,

$ 5S4+ 1,m+1)2
n )
Z (1) Z T En-14(®) =0

=1 m=0

It is well-known from Khan (2023), D. S. Kim and T. Kim (2013), and T. Kim (2017) that

[00]

(log(1t+ t)) A+ = z B ) % (req), (2.8)

n=0

where B,(lr) (x) are called the higher-order Bernoulli polynomials which are given by the

generating function
t T = t"
xt _ ) -
(ef—1) ¢ _ZB" g
n=0

Theorem 2.7. For n = 0, we have

l

n (1 _ u)lB(l)
Hr(lz)% () = Z (I)TllHn—u(u)-
1=0

Proof. Using (1.8), we first consider the following expression

d < (log(1 + (1 — w)x)) ™

d
aEik(log(l +(1-wx)) = an=1 (n + 1!nk

_ 1—u S (log(1+ (1 —w)x)) "
T (14+ A -wx)log(l+ (1 —u)x) L] (n+ 1)!nk-1
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_ 1—u
1+ (1 —-wx)log(1+ (1 —u)x)

Eip(log(1 + (1 —u)x)) (2.9)

From (2.9), k = 1, we have

N " A-—wkt 1
Z H, 7 () n! x(g(x)—w) ), 1+ @1 —wi)log(l+ (1—u)t)
" (k—1)—-times
t 1 : )
% —];) (1 + (1 — u)t) log(l + (1 — ‘u,)t) 0 (1 + (1 _ u)t) IOg(l + (1 — u)t) dtdt ...dt

Hence, we require

i HO( )ﬁ . (A-w x (1 —w)tdt 210
L nA\W T = x(ey(x) —w) Jy, (1+ (1 —wt)log(l+ (1—w)t) .

_ Q- np (n)
x(q(x)—u)f Z“ W By dt

-w o -wrBM
~ x(ep(x) —u) :n +1 n!
n=

(1-w"B x
(Zw—)( )
had L — ) B(l) X"
=Z Z z+1 Hne () |57 (240

n=0 \ [=0

By (2.10) and (2.11), we obtain at the desired result. Thus, we complete the proof. m

Theorem 2.8. Let k = 1 and m € N U {0}, s € C, we have

Xy (—m) = (1 —w) ™ 1(=1)"™HY) (w)
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Proof. Let k = 1, be an integer. For s € C, we define the function yy ,, ,,(s) as

Xiww(S) = ) f e (Z) D Eip(log(1 + (1 — u)z2)) dz. (2.12)

Note that the integrand is given by:

Zs—l

mElk(log(l + (1 - u)z)),

where:

e TI'(s) is the Gamma function, holomorphic for s # 0,—-1,-2, ...,

o 7571 = e(s~D18() where log(z) is the principal branch of the logarithm,
e ¢,(2) is the exponential-like function, and e, (z) —u # 0,

e FEi, involves a series expansion of logarithmic terms.

Asz - 0t:

e 25 1 behaves as zRH()~1,
e Forsmall z,e,(z)~1, so e,(z) — u remains finite for u # 1.

e Fi(log(1+ (1 —u)z)) is well behaved for small z, as log(1 + (1 — u)z) ~(1 — u)z.
Thus, near z = 0, the integrand behaves as z*()~1, which converges if R(s) > 0.

As z — oo:
. Forlarge z, e,(z) grows exponentially, ensuring e, (z) — u does not vanish.
« The term Ei;(log(1 + (1 —u)z)) involves higher-order logarithmic growth, but its
growth is tempered by the denominator e, (z) — u.

For large z, the integrand behaves approximately as:

SRE-1 R(s)-2

zey(z)  ey(2)
The exponential growth of e, (z) dominates any polynomial growth in z*)=2 ensuring converges
as z — oo, To apply the Comparison Test, compare the magnitude of the integrand with a simpler,
absolutely convergent integral. For R(s) > 0, the magnitude of the integrand can be bounded as:

s—-1 _ | |€R(S)—2
Z—(e,,(z) m— Eip(log(1+ (1 —w2z)| < C—|€U(Z)|
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where C is a constant accounting for the boundedness of Ei, and e, (z) — u. The integral of this
bound converges absolutely for R(s) > 0. Moreover one may observe the following holomorphic
dependence on s:

e The factor z5~1 = s~V 108 depends holomorphically on s.
e The integral converges uniformly for R(s) > 0, ensuring the holomorphicity of the
integral as a function of s.

By the Comparison Test and the uniform convergence of the integral for R(s) > 0, xy,,,(s) is
holomorphic in this region. The Gamma function ['(s) introduces additional singularities at s =

,—1,—2, .., but Yy, ,,(s) remains holomorphic where s avoids these poles.

From (2.12), we note that

(1—-w)s?t (® 751 .
X () = () jo 2e,(2) — ) Ei,(log(1+ (1 —w)z)) dz
(1 — u)s—l 1 551 .
T TTE) fo z(e,(2) — u) Eii(log(1 + (1 —w)2)) dz

(1 _ u)S—l joo ZS—l .
+ Ei,(log(1+ (1 —u)z)) dz. (2.13)
1

I'(s) z(ey(2) —u)

The second integral converges absolutely for any s € C and hence, the second term on the right-
hand side vanishes at non-positive integers. That is,

lim
S—>—m

‘(1 _ u)s—l j«oo Zs—l
1

T'(s) 2(ey(2) — ) Eiy(log(1+ (1 —u)z)) dz

(1—u)y ™1

oy M =0 (2.14)

since
T

F(s)r(1—s) =

sin(ms)

On the other hand, for R(s) > 0, the first integral in (2.13) can be written as

Eiy(log(1+ (1 —u)z)) dz

(1 _ u)s—l fl Zs—l
I(s) Jo z(en(2) —w)

o]

Q- wTIOHR W (L
T T(s) Z n! fOZ tdz

n=0
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_ AW W 1
O T(s) Z n!l n+s (2.15)

n=0

which defines an entire function s. Thus, we may include that y; ., ,,(s) can be continued to an
entire function of s. Further, from (2.14) and (2.15), we obtain

(1—u)s? fl 751

Xieup(=m) = lim

SBTTG) Jy 2 —w Drlosd F (1 mw) de
- u)st (k)(u) 1
= A I(s) z s+n n!

C(-wst o1 H“‘)(u)
=-+04+-4+0+ lim
s>-m  TI(s) s+m

+0+0+-

. (1—ws T - s)sin(ms) HY) (w)
= lim .

so>-m  T(s) T m!

et ffi(u)
=1 —-uw)™™'T'(1+ m)cos(tm)

(2.16)
= (1 —w) ™ (=D"HL W)
Thus, we complete the proof of this theorem. m
Theorem 2.9. For n = 0, we have

n

H(k)(x+y,u) = z H(k) A(x u)(}’)m/’l

m=0

Proof. From (2.1), we have

i B+ g Eiy(log(1 + (1 — w)1))

ORI
- (Z HY 0 ) %) (Z Pma %)
n=0 m=0

= Z <Z ( )Hr(Lk)m)L(x; u)(}’)m,/l)% (2,17)
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Comparing the coefficients on both sides, we get the result.m

Corollary 2.10. For n = 0, we have

n

H® (e + 1u) = Z ) B @) (D

Proof. By (2.1), we observe that

C Ei,(log(1 1-
DG + 10 - e w)] o = (FEEE I e ope 0 - 1
n=0

- i i ( HO s u)(l)ml — = Z HE) (x; u)— (2.18)

n=0m=0
Comparing coefficients of both sides, we get the desired result.m

Theorem 2.11. For n = 0, we have

HEw =) 3" (1) 0 S240m.9) HE,, 1)

m=0 q=0
Proof. From (2.1), we have

W, -t (Eh(og(1+(1—w)\
ZHM(’“ R G TG E K0

_ (Eik(log(l + (1 —uw)t))

D=0 ) [e,(£) — 1+ 1]*

_ (Ei(log(1 + (1 —w)\ [ < 2 ol
B ( t(ex(t) —w) ) ;)(x)q ; S22(L@) ¢

=Z ZZ(Trrll)(x)qsz”l(m’Q)H(kmA(u) ;—T: (2.19)
n=0 \ m=0qg=0

n
By comparing the coefficients of % on both sides, we get the desired result.m

Theorem 2.12. For n = 0, we have
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n 1
H) e + alu) =ZZ @) S22 (L DHE, (@)

Proof- Replacing x by x + a in (2.1), we h

C n o Ei(log(1+ (1 -
> HR G+ @y = (BT E 0N e
n=0

t(ea(t) —u)

_(Eg(og(1+ (1 —w)t)) ., > > ¢l
- < t(ey(t) —u) € (t)) ;(x)q ; So2(Lq) i

[ee]

= (Z (k)(a u) ) Z(x)qzszl(l Q) T
n=0

n
|

(2.20)

- i zn:zl: (x)q S CI) M(a u)

Therefore, by (2.1) and (2.20), we obtain the result.m

Type 2 degenerate unipoly-Frobenius-Euler polynomials

Let p be any arithmetic function which is a real or complex valued function defined on the
set of positive integers N. Kurt (2017) defined the unipoly function attached to polynomials p(x)
by

u(xlp) = Z pr(;:) (3.1)
n=1
Moreover,
up(x|1) = z i—k, (see [7,15)). (3.2)

n=1
is the ordinary polylogarithm function.

By using (3.1), we define the type 2 degenerate unipoly-Frobenius-Euler polynomials by
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u(log(1 + (1 —wt)|p) eX(t) = Z H®

L—Tl
t(e () — w) nap (5 W) T

In the case whenx = 0, H

nAp nlp
Frobenius-Euler numbers. Let us take p(n) = ﬁ Then, we have
- (k) i _ uk(log(l + (1 - u)t)l T) x
;H 1( ) 2 TOED AL
- (log(1+ (1 —w) ™
t(e,—l(t) u) et ) (m+ 1)!'mk
_Eip(log(1+ (1 —-wt))
T, @D i
Z H(k) (x5 u) —

n=0
Thus, we have

H (k)1 (x;u) = Hr(lk)l) (x;u)

Theorem 3.1. Letn € N and k € Z. Then we have

5

nAp (1 - u)lHn—l,A(u)

) = i ny plm + D(m + DIS; (L +1,m + 1)

(m + 1)k I+1

n
=0 m=0

In particular,

n l
=3T3 () SRS 0

Proof. From (3.3), we get

o]

W@ ot welog(l+ (1= w)lp)
;H“”( = t(e;(t) — )
1 o p(m)

= rOOE) - (log(1 + (1 —w)et)™

27

(3.3)

() (w)=H () (0; u) are called the type 2 degenerate unipoly-

(3.4)

(3.5)

3.6)



RJ

28 RMRJVol. 13 no. 1 June 2025
MULTIDISCIPLINARY RESEARCH JOURNAL

1 o pm+ Dm+1)! < (1 —wt)'
GG R l:leSl (bm+ D=

-t o pm+ D+ DI S+ Lm+ 1) tt
t(e(® —w) o (m+ 1)k Z [+1 a- u)lﬁ

pm+1D)(m+ DS U+1,m+1) t!
=<ZH“() )( ot DF Zl 1 (1—u)lﬁ>

© n l
1 DIS;(I+1,m+1 n
:Z ZZ (rll) p(m;ni(g: 25 +I+T+ )(1—u)lHn—z,/1(u) % (3.7)

n=0 \ l=0 m=0
Therefore, by comparing the coefficients on both sides of (3.7), we obtain the result.m

Theorem 3.2. Let n = 0 and k € Z. Then we have
n
HYY (e u) = Z Z () @)q Soaltm H, ). (3.8)

Proof. Recalling from (3.3) that

(o]

Z HY (x;u )_n (uk(log(l + (1 —wt)|p) ) eX(t)

nAp t(ey(t) —u)

n=0

_ (uk(logcl + (1= wo)lp)
t(ex(®) — )

> [e;(®) —1+1)F

_ ur(log(1 + (1 —w)t)|p) i e £l
- < t(ey(t) —u) > ;(x)q ; S22 q) i

n

= Z Z Z (::l) (X)q Sz,l(m,Q)HT(l )map (w) % (3.9

n=0 \ m=0q=0

n
By comparing the coefficients of ;—' on both sides, we get the desired result.m
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Theorem 3.2. Let n = 0 and k € Z. Then we have

n
n
1Y, Gw = " () By @0 (3.10)
m=0

Proof. 1t is proved by using (3.3) that

(o]

w .t (ulog(l+ (A -wdp)\ ,
2, a5 = ( t(ex(®) — ) >el ©

n=0

= (Z H ) %) (Z ma %)
m=0

n=0
-5 (3 (2 o) -
n=0 \m=0

By comparing the coefficients of (3.11) on both sides, we obtain the result.m

CONCLUSION

Motivated by the definition of the degenerate poly-Bernoulli polynomials introduced by T. Kim et
al. (2015), in the present paper, the researchers considered a class of new generating function for the
degenerate Frobenius-Euler polynomials, called the type 2 degenerate poly-Frobenius-Euler polynomials,
using the polyexponential function. Then, it derived some useful relations and properties. It was shown
that the type 2 degenerate poly-Frobenius-Euler polynomials equal a linear combination of the degenerate
Frobenius-Euler polynomials and Stirlings numbers of the first and second kind. In a special case, a relation
was given between the type 2 degenerate Frobenius-Euler polynomials and Bernoulli polynomials of order
n. Moreover, inspired by the definition of unipoly-Bernoulli polynomials introduced by T. Kim et al. (2020),
the researchers have introduced the type 2 degenerate unipoly-Frobenius-Euler polynomials using unipoly
function and given multifarious properties, including degenerate Stirling numbers of the second kind and
degenerate Frobenius-Euler polynomials.
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