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INTRODUCTION

Numerous mathematicians are actively engaged in the exploration of special functions and
various hybrid variants, such as Frobenius-Euler-Genocchi Polynomials, Bivariate (p,q) -
Bernoulli-Fibonacci Polynomials, Bivariate (p, g) -Bernoulli-Lucas Polynomials, Apostol-Type
Frobenius-Euler Polynomials, g -Trigonometric Functions, Fibonacci sequence, (p,q) -
Fibonacci, and (p, q) -Lucas Polynomials, particularly in conjunction with Changhee
Numbers (Alam et al., 2023; Elizalde & Patan, 2022; Guan et al., 2023; Rao et al., 2023; Zhang
etal., 2023). These distinct mathematical constructs exhibit intriguing properties, notably explicit
formulas that find practical applications in computer modeling.

The polynomials that will be considered are given by the generating functions
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where T,E” ) (x; a, b, c)denotes the tangent polynomials of order u and TTE”) (x; 4, a, b, ¢) denote the
Apostol-tangent polynomials of order u with y € C, A = e, B=2Inb—1lna>0anda,b,c
are positive real numbers.

Asymptotic approximations of Bernoulli polynomials, Euler Polynomials, and Genocchi
polynomials of complex order were obtained using contour integration (Lopez & Temme, 2010).
Asymptotic approximations of Apostol-Bernoulli polynomials, Apostol-Euler Polynomials,
Apostol-Genocchi polynomials, and Apostol-tangent polynomials were derived using Fourier series
and ordering of poles of the generating function (Corcino et al., 2022). Asymptotics for complex
order tangent and Apostol-tangent were obtained in Corcino et al. (2023) following the method
in Lopez and Temme (2010). The 2-variable g-generalized tangent-Apostol-type polynomials, a
new class of q-hybrid special polynomials, were studied in Yasmin and Muhyi (2021). Interesting
properties for a new generalization for tangent polynomials were derived in Bildirici et al. (2014).
Mathematicians were attracted to work on tangent polynomials because of their applications in the
field of mathematics and physics (Ryoo, 2013a; Ryoo, 2013b). We follow Yasmin and Muhyi
(2021) in the use of the small letter tangent polynomials.

This paper will investigate the method used in Corcino et al. (2023) and Lopez and Temme
(2010) to find asymptotic formulas of tangent and Apostol-tangent polynomials of complex order
u with parameters a, b, and c.

Asymptotic expansions of tangent polynomials of complex order pu with
parameters a, b, c

The singularities of the generating function in (1) can be obtained by setting the denominator
equal to zero. This is done as follows:
b?t + at = 0e?tInb 4 3tna = o exp{(2tInb — tlna)} = —1

@2n+ Dmi

t@2Inb—Ina) = 2n+ Drmit = 5 —— —.

The singularities of (1) nearest to the origin are i%i, where B = 2Inb —Ina. The main

asymptotic contribution is derived from the singularities at ty and t_. The Cauchy Integral Formula
in complex analysis will be applied to obtain an integral representation of the polynomials. For more
discussion on the Cauchy Integral Formula, see Churchill et al. (1976). The integration will be done

around a circle C; about 0 with radius |ty| + €, € > 0, avoiding the branch cuts along the lines y = %
andy = — % of (1). See Figure 1 to visualize the contour of integration. In Figure 1, B is assumed to

be greater than 2 so that t, = %i below %l andt_; = —%i is above —%i. Applying Cauchy Integral
Formula with C; as the contour of integration yields,

n 2 g xtlnc dat
2mi f (rmraome) "y = ReslF@,0, 3
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Res[f(t),O]z%(f f(t)dt+ff(t)dt f(t)dt). 4)
c* L_ Ly

By the principle of deformation of paths,

Res[f(t),0] = n! 2 # xtlnc dat _T(u) ‘ab 5
estr (0,01 = g [ (commrrarms) @ grr = W (a0,

where C is a circle with a radius less than /B. Then (4) and (5) yield

|

T,g")(x;a,b,c)zn—( F(O)dt + f F(®dt f(t)dt). (6)
c* L_ Ly

21l

Lemma 2.1. As n = +oo, the integral along C* is O(m™™). That is,

[ r@de= o
.

Figure 1. Contour for tangent polynomials of complex order u with parameters a, b and ¢
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where u and x are fixed complex numbers. Let max{|u|, |x|} < K and there is an M > 0 such that
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Thus,

2 I(
o [ Jaet =T o, ®

f®dt| <
c*

Consequently, we have the following theorem.

Theorem 2.2. Asn — +oo, u, x are fixed complex numbers, and p = (2D —u—n — 2)% where

xlnc—plna
p = Xneuma

and B=2Inb—1Ina,<1— u > denoted the kth falling factorial,

nl 2#+1 grpu-1 (1 — ) {1
TW(x;a,b,c) ~ W{cosﬁz oy X Re(F,) — smﬁz . Em@E)! (9)
k=0 k=0

Proof. For evaluating the integrals along the specified contours, denote I, as the integral along the
contour L, and I_ as the integral along the contour L_. We begin by calculating I, , which is
expressed as follows:

u extlnc dt
L me (eZtlnb + etlna)u tn+1’

Here, the integrand involves a complex exponential function modified by parameters a, b, and c,
and the contour L, is chosen to encapsulate the singularities of the integrand in a manner conducive
to residue calculus. The factor t™*?1 in the denominator is critical, as it governs the order of the pole
at t = 0, which directly influences the outcome of the integral. The next steps involve evaluating this
integral using techniques from complex analysis, particularly focusing on the behavior of the integrand

mieS
= ds and

s
along the contour L, Now, let t =

mixeSInc i e’s mixeSlnc

n! 2# e B g ds n!2#-1pn e~ B ds
I, = = .
+ 2mi Jg 2nieSInb mieSIna\* /i es\"*1 (mi)n+1 c 2mieSlnb mieSlna\ ¥
+(e B +e B ) (T) +<e B +e B ) ens
. . . wi(xInc—pulna) mi(xIlnc—plna) . .
Multiplying the last array with (mi)# (i)™, e B e B and since e™ = —1, we have
mixeSInc i (xInc—plna) mwi(xInc—plna)
n! 264-1pn e B (m)H*(mi)He B e B ds
T (mi)n+1 mieSlna s 2mieSlnb mieSlna . K

mixeSInc mieSlna mwi(xlnc—ulna) mi(xlnc—pulna)
n! 2¢4-1pn f(ni)"e B e B e B e B ds

T (mi)ktntlemin mieS(2lnb-Ina) . #
( ) Cy (e B T 1 ens
mi(xInc—ulna) o
n! 2#-1pn (mi)*e B €D gs
- i i (xInc—plna) wi (eS—1) _ 1)U pns ’
(ni)u+n+1emue_+ Cy (e 1) e

ioS
where C, is the image of L, under the transformation t = %, , 1s the contour that encircles the

xIlnc—ulna

origin in the clockwise direction. Let v = wi(e® — 1) and D = , then the last array will

become
_ ml2eipn (mi)*eP? ds
+ = (ni)u+n+1e(u—D)m' c. (e" —_ 1)’"6"5

(10)
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Multiplying s™# s# in equation (10), we have
nl24-1pn (mi)*ePVs—H sk ds

+ = (ni)ﬂ”‘“e(“‘m”i c, (ev _ 1)"‘6”5

n!2#-1pn ( mis )" DY gmsn gt g
= - e e S S
(n-i),u+n+1e(u—D)m c, ev—1

n!2#-1pn
— —sn o—p
(n-l')p.+n+1e(y_—D)m' fCJrF(S) e N ds

where

mwis \*
— Dv
F(s) (e . 1) ebv,

(11)

(12)

(13)

Note that applying L’Hospital’s rule, F(0) = 1. To obtain an asymptotic expansion, we apply

Watson’s lemma for loop integrals and then expand,

F(s) = Z Fpsk.
k=0

Substituting (14) to (12), then I, becomes

u-1lpn had
I, = ni2t B ZF sk e=SmsTHds
+ (rri)#+n+1g(u=-D)mi c k
+ k=0

nl2#-1pn - (—ns)~W-Ke-nsqg
= (ri)#+n+1leu-D)mi Z k c 2mi (—n)k-#

ni2BT1Bn
= (ni)#+n+1e(ﬂ_D)7Ti Z Fk Hk’
k=0

where
1 1
-_ - - —-ns(__ —(u—k)
Hy T 2m'fc e "S(—ns) ds.
+
Now, evaluate H),. Let t = ns. Then dt = nds,s = %,ds = %,
1 1

H =—— —t(—)~ W=k d¢.
k (—n)k—#+127 -[C+e )

Be deformation of paths, and using the reciprocal Gamma function,

1 i

- = -t (_ -z
M) 2nl,°¢ (=07 dt,

where H is the Hankel contour, we have

1 i

e —— —t(_p)—(u—k) = (=14 k-1 u—k-1
H) S fHe (—t) dt = (1) (D)

1

T(u—k)

(14)

(15)
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Moreover,
~ I B ~ o 1
= (_1)11 1(_1) k nk k-1 F(‘u — k) _k (_1)# 1(_1)k nk k-1 F(“ — k)
— pmi(u— —k— (_1)
= emi(u—1) pu-k-1 )
SinceI'(u — k) = (u—k — 1)!, and
e =x(x+Dx+2)(x+k—-1)
(1-—ph=AQ-pC-wWB-—p - k-w,
then
(-DF _ EDF (DR - D@ =D =3 @k _(1-p)
Fp—k) (u—k-1)! (-1 W) -
Thus,
(1— )
H — u—k-1 m(p. 1)
- T

i
Writing i"*# = e ™tW 7 |

| 24BN | 2upn
. n!2%B Z Fka n! 2B Z Fknu k-1 TL’l(u Hy\- Mk <1 M)k
(1'[1)“"’" e(u D)mi (7‘[1)“"’” e(u D)mi (,Ll)

n zuBn nu 1 e(2D—u—n—2)m/2 i v (1 /J)k
T T () T

Since e BP~H=27/2 = cos[(2D — p —n — 2)m/2] + isin[(2D — u — n — 2)7/2], then

| 24B" pk~1
I+=%(cosﬁ+15mﬂ) [Z( * Re (Fk)+LZ< *Im (Fy)
| QKRN pH-1
_nn-,u+nlj(l) [ .BZ( Re(Fk)+lsmﬁZ< “Re (Fy)

+icosp Z (;—kﬂ)k Im(F) —sin B Z (;—kﬂ)klm(Fk) ,
k=0 k=0

where 8 = (2D —,u—n—2)§.

ioS
The integral along L_ denoted by I_ can be obtained similarly, with t = — %. It can B be shown

that I_ is the complex conjugate of I, (not considering x and p as complex numbers). Thus,

T% (x;a,b,¢) = I, + I = 2 Re(l,).
Hence,

nl 2#+1gnpu=1 o (1 — o (1 —
T¥W(x;a,b,¢) = ——— [cosﬁ z< nk” L Re(F,) —sin B Z< nk“ L Im(Fk)].
k=0 k=0

T T ()
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By settingh = ¢ = e anda = 1 in Theorem 2.2, we derive the following corollary.
Corollary 2.3. [Corcino and Corcino (2022), Theorem 3] Under the conditions of Theorem 2.2 asn — +oo,

T (x;1,e,€) = TH(x)
|2u+n+1
Nnn-u+nl'*( ) [COSB Z( “ Re (Fy) —sinp Z( £ Im (Fi)

where § = (x—u—n—Z)g.

(@)

Computing the first few values of F; ™ and F,;~ using Mathematica yields:

FW =1,
FP = o,
FO = — ﬁ,
FO =",

FZ(T) = ﬁ(—IZﬁZ —12fnm — 3n?n? —u+m?u+ 3u?),
FO = 2e 1
D = =2 @B +nm)(—1+ ),
1
FM = 76 (1287 (=2 + ) + 12fnm (=2 + p) + 3n°m? (=2 + 1)

+u(—m?(=2+ ) — (=1 +wwW)),
F(i) — _L(ZB +n7t)(—4+4-,82 +4-,8n7t+n27r2 + 7#_7.[2 _ 3112)
3 48 .

The first-order approximation is given by the following theorem.
Theorem 2.4. As n — +oo , u, x are fixed complex numbers, and f = (2D —u—n — 2)%
and B=2Inb—Ina,

xInc—-pulna
where D = e

w n! 2”+1Bnn“_1 1
Tn (x; a, b, c)~W{cosﬁ + 0 (H)}

Proof. By taking F, for Fj, and taking the first term of the sum, where F, = F(0) = 1,
nl 2#+1pnpu-1
THIL ()
n!2#+1pnppr-1

AT (1)

n! 28+1pnpu-1 1
~ —rcﬂ+”f‘(u) {cosﬁ +0 (;)}

T (x; a, b, c)~ {cos B (Re(Fy) — sin B (Im(F,)) }.

{cos B (1) —sin B(0)}.

Corollary 2.5. [Corcino and Corcino (2022), Theorem 4] Under the conditions of Theorem
2.4asn— +o

W, — ),y n2 kT 1
Tn (x, 1, e, e) - Tn (x) n.u+n1"(u) {COSB + 0 (n)} (16)

where/?:(x—u—n—Z)%.

Proof. Take b =c =e and a = 1 in Theorem 2.4.
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Asymptotic expansions of Apostol-tangent polynomials of complex order p with parameters

ab,c

We apply the same method as the previous section. For convenience, we take 1 = e?¢
where

log A . . .. . L .
& = Of and |¢&] < g Computation for the singularities of the generating function in (2) is done
as follows:

Je2tnb 4 otlna _
er+2tlnb—tlna =—-1

26 +2tlnb —tlna = 2k + Dmi
_ @k+Dmi—2¢
- B

= €T

With fixed A, these singularities lie on a vertical line to the left or the right of the origin
depending on whether v, the real part of &, is positive or negative (See Figure 2).

The singularities nearest to the origin are t; and t*,, which are given by

mwi—2¢& w  _ mi—28
g =T (17)

Applying Cauchy’s integral formula to (2), we have

to =

W, . 2 tine 4t
Tn (x'/l'a'b'c)_ﬁfc(ezﬂnb+2$+etlna e* nCtn+1 (18)

where C is a circle about zero with radius < min{|t;|, |tX|}. These singularities are the sources
of the main asymptotic contribution. We integrate around a circle C, about zero with radius =
min{|t;|, |tZ1]|} + €. The choice of the radius of C, is such that only the singularities 0, tg
andt” ;. Moreover, we integrate around C, avoiding the branch cuts from t; to +o0 and t*; to
~+o0o0. Refer again to Figure 2.

Denote the loops by L% and L and the remaining part of the circle C, by C**. Then

n—'f t dt—n—! (t)dt+f (t) dt + (t) dt 19
= ng() =519 L:g .9 (19)

c

where g(t) is the integrand on the right-hand side of (18). By the principle of deformation of
paths,

n! n! W 2
ﬁfczg(t) dt—ELg(t) dt = T,”(x;A,a,b,c) (20)
and
n!

T,E“)(x;l,a,b'c) =5 Uc**g(t) dt + Jl::g(t) dt+J;*_g(t) dt]. 21D

J5RECOLETOS
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n—2v ta'E

— ti,4

Nl

_:—/

Figure 2. Contour for Apostol-tangent polynomials of complex order u with parameters a,b
and c

Corollary 3.1. It follows from Lemma 2.1 that the contribution from the circular arc C** is
also O((m)™™), so that, for large values of n (asn — +o0), it is exponentially small with

respect to the main contribution.

Theorem 3.2. 4s n = +oo, u, x and A are fixed complex numbers and p = tog 2

>

2mi
nl 21 Brpk=1e=2pDmi eB o (1
T (x; 4, a, b, €)~ D U= e
T (W) (1 =2p)n n
e~ B - 1-—
+ —Z fk ﬂ +
(1 + 2p)utn nk
k=0
Proof. We compute the contributions from the loops L% and L. Let I} be the
integral along the loop L%.. For computation purposes, write A = e?P™_ Then
n! 21extinc dt
+ = —21_”, I (eztlnb+2p77:i + etlna )u tn+1
Lett = (I_ZP) mieS. Then dt = (1_2p) mieSds and
B B
n! pue(TFP)mietne (1 _BZp) mie®d
It =

= oni c (ez(l—sz)nieslanpm N e(l—BZP)n-ieslna )u ((1;#) m-es)n+1

(l_gp)niesxlnc

ni2h~1pn ds

T (@intl(a-2 )"fCi 1-2p\ . H 1-2p\ . 1-2py . ] H
p (e(iB )Tneslna> (ez( B )nleslnb—( 5 )Tneslna+2pn:1+1) esn

Q

1-2p\_. s _
nl2u-1pn f e( B )me (xInc ulna)ds
c; (e

= (T”')n+1(1 — zp)neniu (1-2p)mieS+2pmi—mi __ 1)uesn )

(22)

85



I RECOLETOS

IDISCIPLINARY RESEARCH JOURNAL

86 RMRJVol. 12 no. 2 December 2024

Multiplying e" 522G ne-uina), G20 me-pina) g [(1 Zp) i]“ [(%) m.]‘“’then

e<1_32p)n'ies(xln c—uln a)ds
I =

n!2#-1p"
(n-i)n+1(1 — zp)nem’u fci (e(l—Zp)TrieS+2pni—ni — 1)#9571
%sz(xlnc—ulna)e—%jzp)(xlnc—ulna) [(1 — Zp) T[i]u [(1 - Zp) T[l']_#
B B

Xe

n!2#-tpptn 1-2p ePv*ds
= (n_i)u+n+1(1 _ Zp)“"'"e[“_(l_z/’)m”i fCi [( ) ] (ev* _ 1)”esn

n!2#-1B" | f [<<1 - zmm')]“ PVt

= (T[i)u+n+1(1 _ zp)u+ne[u—(1—2p)D]7n cx ev: — 1

xInc— ,ulna

where v *= (1 — 2p)(e®* — Dmwiand D =

| 2#—1pn -
]:_ _ : n: 2 B __ [ (1 ZP)TTLS)] eDy*e—snS—“ds‘
(n-l)u+n+1(1 — Zp)u+ne[u (1—2p)D]mi evr —

. Multiplying the last array by s#s™#, then

nl2#-1pn
= (mi)#+n+1(1 — 2p)Ktnelu—(1-2p)D]mi

f h(s)e *"s~Hds, (23)
o

where
ns) = [(S52255] oo

ev*

By expanding h(s) = X7 hks®, (23) becomes

n! 24 1g" <
- k p—sne—p
I (n-i)u+n+1(1 — Zp)u+ne[u—(1—2p)D]ni fCi I;)hks e s~Hds,

n! 24B™
= (mi)A* (1 — 2p)i+neglui—(1-2p)DImi kZ(:)hIch’

where
H, = ;L[ e—"s(—ns)k_” ds
kT (—n)kH 2mi c.
= ekl pmin A=k
r(w
So,
npn = -
e n!2*B Z hynk1 emp(l 1)y,
+ (mi)utn(1 — 2p)rtneln—(1-2p)D]mi = r(w -’

n! 24 Bne2pPDT e[zp_“_n]ﬂ?in“_1 o (1
()7 (1 — 2p)H*+mT () kz:;) ok
nl 28 Bre 2D Qi -1 h (1 — ),

(m(1—2p))**"T(w) &" o
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Next, let I* be the integral along the loop L Then,

Zuextlnc dt
I- 27‘[[ (QZtlnb+2p7Ti + etlna)u tn+l’ (24)

o 1-2 . .
After the substitution t = (Tp) mie®, we obtain

1 NG 12
Ir= — ni2® B — f (=1 = 2p)mi ePvre—snds,
(n—l)u+n+1(_1 — Zp)u+ne[u (—1-2p)D]mi ct ev — 1

n!2¢71B"
= (ni)u+n+1(_1 — Zp)y+ne[;4—(—1—2p)D]m'

f f(s)s*e s"ds,
ct

where

£ = (22| e

ev*

Expand f(s) = Y7o fxs* and interchange the summation and integration. Note that

(—Hptn = e~ T Thus,

o nl 2#B"e—2pDmi piBpu—1 Z (1 ‘u)k
(m (1 +2p)"" T () £

where —8 = (u+n — 2D) g Combining I} and [I* will give,
T (x;A,a,b,c) = I+ I"

_ n!Z“Bne_ZPD’“'e"Bn“_li (1 — u)g n!Z“B”e_ZpD""eiBn“_li (1 — u)
C @@ -2 T Li© ok (m (1+2p))ﬂ+nr<u) = “ onk

_ nl2KBTnkTlem200M e'f ih (L=, Z <1—u>k
ST e |a-zorm ok T +2p)ﬂ+" fe |

For b = ¢ = e and a = 1, we have the following theorem.

Corollary 3.3. [Corcino et al. (2023), Theorem 7] Under the conditions of Theorem
3.2asn— + oo,

nl 2utnpu=1,-2pmi elif ® 1—
Té“)(x;/l, 1,e,e)~ zhk%
7-[#+Tl1"('u) (1 — Zp)l""'" -~ n

el o (1
+(1+2p)#+nkz_0fk T

whereﬁ=(x—u—n)%.

Corollary 3.4. When p = 0, Theorem 3.2 reduces to Theorem 2.2.

Computing the first few values of h; and f;, using Mathematica yields:
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=1,
rY = o,
@ H
A =5
1 2
©) 1
hi? = =5 (1 =2p) + (2f +nm),

1
r) = 52 (712871 = 2p)* = 128(1 — 2p)*nm — 3(1 = 2p)*n?m* + u(~1
+ (1 —-2p)?m?+3u),
H o1
h$? = 2(=12p)(2B + nm) (1 + ),

and
) _
% = o
1A
5} :0"“
) _
f1r —_E'
1

D = —5(1+2p) + (2B +nm),
fz(r) _ %(_12('3 +2Bp)%2 —128(1 + 2p)?nm — 3(r + 2pm)?n? + u(—1+(1 + 2p)?m?
+3u),
N1
AR 7 (120 2B +nm) (=1 + 1),

A first-order approximation is obtained by taking h, and f, for h, and f}, respectively, and
taking the first term of the sum. This is given in the following theorem.

Theorem 3.5. As n = 400, u and x are fixed complex numbers,

n! 2LB k=1 (et (1 +2p) + e B (1 -2 1
T (x;1,a,b, ¢)~ { ( p) ( p) +0 (—)}

THART () (1 —4p2)rsn n

where = (x—,u—n)g.

Take p = 0,b =c = ¢, and a = 1, we have the following corollary.

Corollary 3.6. [Corcino et al. (2023), Theorem 9] Under the conditions of Theorem 3.5 as
n — +oo,
T(M)( 11 ) nl 2Wtnpk-1 {2 ‘o (1)}
n x;1,1,ee, TR () cosf m
where B = (x — u—n)g .

Remark 3.7. When p =0, Theorem 3.5 reduces to Theorem 2.4.
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CONCLUSION

In conclusion, this paper has endeavored to extend the exploration of asymptotic approximations,
explicitly focusing on tangent and Apostol-tangent polynomials of complex order p with parameters a,
b, and c. Building upon methodologies employed in prior studies, such as Corcino et al. (2023) and Lépez
and Temme (2010), which successfully obtained asymptotic approximations for various polynomials,
our investigation seeks to apply similar techniques to unveil insightful results regarding the tangent
and Apostol-tangent polynomials. The foundation laid by previous research, particularly in the study of
Bernoulli, Euler, and Genocchi polynomials and the innovative approaches demonstrated in works like
Yasmin and Muhyi (2021), provides a robust framework for our inquiry. Given the historical significance
and widespread applications of tangent polynomials in mathematics and physics, pursuing asymptotic
formulas for this new class of polynomials promises to contribute valuable insights to the mathematical
community.

Recommendations for future research involve exploring the broader implications and applications
of the derived asymptotic formulas for tangent and Apostol-tangent polynomials. Additionally, further
investigations into the properties and behaviors of the newly introduced 2-variable g-generalized
tangent-Apostol-type polynomials, as studied in Yasmin and Muhyi (2021), could pave the way for
deeper understanding and potential applications in various scientific disciplines. Collaborative efforts
across mathematical and scientific communities may explore these polynomials more comprehensively,
unlocking new avenues for theoretical advancements and practical implementations.
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