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Abstract
This study developed a software application that integrates Internet of 

Things (IoT) devices and weather data to visualize prime fishing locations 
using advanced spatial data techniques. The application features a dashboard 
that processes and displays real-time data, providing insights into fishing 
trends, fisherman activities, boat locations, and environmental conditions. 
The application uses the Graham scan method to generate a GIS grid heatmap 
for visualizing fish populations and trends, enhancing fisheries management 
capabilities. Comprehensive testing and refinement ensured the application's 
usability and adaptability. The results demonstrated high user satisfaction, with 
a 91% rating in usability and accuracy. The Graham Scan method successfully 
mapped fishing zones, achieving a 97.96% overlap in spatial-temporal data 
analysis, proving essential for data-driven decision-making in sustainable 
fisheries management.
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INTRODUCTION
With its rich maritime landscapes, the Philippine archipelago plays a pivotal role in shaping the local 

economies and cultural and societal traditions through its historical significance in fishing activities. As 
the world faces an ever-increasing demand, there's a pressing need to transition from traditional methods 
to more efficient and sustainable fishing practices.

Many researchers have integrated technology into fishing methodologies amidst technological 
advancements. Gladju et al. (2022) comprehensively reviewed data mining and machine learning 
applications in aquaculture and fisheries. Their findings underscore the pivotal role these technologies 
play in optimizing fish farming and capture fisheries, including improvements in feed use, disease 
prevention, and catch monitoring. Such innovations promise to boost the efficiency and sustainability of 
fisheries by facilitating smarter decision-making and more precise operational control. Calderwood (2022) 
highlighted the expanding reliance on smartphone applications within commercial fisheries, noting their 
critical role in enhancing various industry aspects—from data collection to regulatory compliance and 
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safety. This study showcases how essential apps have become for efficient operations in commercial 
wild capture fisheries, improving data gathering and sharing, essential for sustainable management and 
informed decision-making. Tilley et al. (2020) introduced PeskAAS, an open-source digital platform that 
uses the Shiny R package and other tools to enhance small-scale fisheries management. By improving data 
collection, analysis, and visualization, PeskAAS addresses significant data gaps, particularly in dispersed 
and diverse fisheries, thus supporting more sustainable practices through better-informed decision-
making. Additionally, Anuchiracheeva et al. (2003) saw the potential of Geographic Information Systems 
(GIS) as a tool to harness and streamline local fishermen's knowledge. Complementing this, Agcaoili 
(2018) demonstrated the efficacy of GIS coupled with a decision support system for spatial identification 
in resource-focused studies, underscoring the potential of these technologies in the fisheries sector.

Amidst these strides in technological integration, the computational research around Convex Hulls 
has opened new avenues. Sharif et al. (2012) explored the application of Convex Hulls in virtual reality, 
particularly for boundary detection in images. Introducing a hybrid method that combines quick hull and 
Graham's Scan algorithms unveiled potential advancements that could be adapted for more accurate 
mapping and understanding of fisheries regions and patterns.

However, despite these significant advancements, areas still need to be explored in merging 
traditional knowledge with contemporary technologies. Dash et al. (2023) provided a bibliometric 
analysis underscoring ICT's significant impact on fisheries, identifying gaps particularly in socio-
economic upliftment and sustainability practices. This finding aligns with recent initiatives in regions 
like Southeast Asia, where ICT integration has been pivotal but uneven across socio-economic groups. 
Meanwhile, De Freitas and Tagliani  (2009) demonstrated the successful application of GIS to harmonize 
traditional and scientific data, enhancing artisanal fisheries management in southern Brazil. However, 
challenges persist in uniformly interpreting this integrated data across different fisheries, highlighting the 
need for region-specific adaptations. Similarly, Coutinho and Boukerche (2022) advanced the use of IoT 
with cloud computing and machine learning in smart aquaculture. Their model, promising in controlled 
environments, still faces hurdles in broader, real-world application due to the complexity of data sources 
and the need for robust, real-time processing capabilities. These studies collectively reveal a landscape 
where technology's potential to transform fisheries management is evident. Yet, its full realization 
requires careful navigation of technological, ecological, and socio-economic variables, particularly in 
underrepresented regions.

This research endeavors to fill these gaps. Building upon the foundational works of experts like 
Patil and Sachapara (2017), who championed intelligent IoT solutions, and Bradley et al. (2019), who 
emphasized the role of innovative technology in fisheries management, our approach uniquely 
integrates various data sources into a unified, cohesive framework that leverages real-time environmental 
data alongside traditional fishing knowledge, supported by advanced IoT technologies. Unlike previous 
methods that may offer static or less adaptable solutions, our system is specifically designed to adjust 
to various ecological and socio-economic contexts through an innovative configuration of IoT data 
flows and feedback mechanisms. This dynamic adaptability not only enhances fishing efficiency but also 
ensures sustainability by facilitating more responsive and precise management strategies tailored to the 
specific needs of different fishing communities. Our method stands out by its ability to merge real-time 
data capture with an intuitive user interface, making it accessible for fishers and promoting community-
inclusive fisheries management. This approach takes cues from Kolding et al. (2014), Leleu et al. (2012), 
and Morzaria-Luna et al. (2020), who have underscored the importance of data-driven, community-
inclusive, and ecologically balanced approaches to fisheries management.
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METHODS
Our research methodology synthesizes classical fishing knowledge, prevalent across diverse marine 

ecosystems, with the innovation of contemporary digital tools. The System Architectural Diagram (Figure 
1) illustrates a streamlined data collection process implemented through a custom-developed mobile 
application in Android Studio. This application facilitates the real-time recording of catch data by Fish 
Landing Officers (FLOs), detailing critical parameters such as species identification and weight metrics. 
Consistent with Musembi et al. (2019), each fisherman or boat is uniquely cataloged to ensure the 
precision of the collected data.

Figure 1. System Architectural Diagram illustrating the data flow from the data collection to 
analysis. This diagram was created by the authors specifically for this study

In parallel, the Internet of Things (IoT) devices are pivotal. Arduino microcontrollers, augmented 
with GPS and GSM modules and installed on fishing boats, are a nod to the preemptive safety measures 
advocated by Jeyanathan et al. (2023). These devices are the cornerstone of our data acquisition system, 
transmitting the collated information through a RESTful API for optimal data flow to a centralized 
repository, a strategy influenced by the efficient communication protocols outlined by Ong  et al. (2015).

The Central Server emerges as the critical repository for all data streams. It processes and retains 
information from the IoT devices and mobile applications and integrates meteorological data from various 
weather APIs. Incorporating Google Maps, the server offers a comprehensive view of fishing locations. 
Notably, it employs the Graham Scan algorithm to create a GIS heatmap, delineating fish distribution 
patterns, an approach inspired by the research of Lamot and Zalik (2003).

Our system's architecture exhibits inherent scalability, as demonstrated by its seamless operation 
beyond its initial deployment in Cogtong Bay, Bohol, Philippines. Taking cues from the database 
management strategies by Wang et al. (2012), the design is capable of managing data from varied fishing 
operations, establishing its applicability to a range of marine environments.

Validation of the system's capability for broader deployment was achieved through pilot studies and 
environmental simulations, confirming its proficiency in handling increased data volumes and operational 
demands, thus endorsing its utility for comprehensive fisheries management.

The culmination of the endeavor is a Web Application, crafted using the CodeIgniter PHP MVC 
framework, that showcases an analytics dashboard. This platform consolidates fishing data trends 
and catalog details, enriched with real-time and historical meteorological data, to provide a granular 
understanding of fishing patterns. This application, resonant with the business intelligence imperatives 
discussed by Khatuwal and Puri (2022), facilitates swift data dissemination and analytical insight derivation.

Amora, E. N. & Cuizon, J.
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Our research promulgates a cyclic approach to data management, underscoring continual 
collection, transmission, processing, and information display. This model is designed to reinforce fisheries 
management by integrating the robustness of traditional fisheries research with the agility of cutting-
edge technology.

Internet Of Things (IoT) Model
As shown in Figure 2, IoT Architectural Flow expands upon our research methodology, detailing the 

IoT framework integral to our study. Central to this framework are Arduino Uno microcontrollers equipped 
with GPS and GSM modules installed on fishing boats, as shown in Figure 3. These microcontrollers 
are critical for accurately tracking boat routes and fishing spots and are essential in real-time data 
transmission to our central server. It also illustrates the IoT device setup, including an image of the device 
installed on a fisherman's boat Figure 3 (A), highlighting its integration into the boat's operations during 
active data collection phases and a close-up of the IoT prototype pre-installation Figure 3 (B), showcasing 
components like the Arduino Uno board, GPS and GSM modules, and an LCD for coordinates reading.

The GPS module continuously tracks and records the movement of fishing boats, marking their 
routes and locations. The accompanying GSM module facilitates the transmission of this data, including 
latitude, longitude, deviceID, and timestamps, to our central database every three minutes via a RESTful 
API. The system's design, including a portable 5-volt rechargeable power bank, ensures uninterrupted 
operation throughout fishing activities.

Our protocol for transmitting geospatial data was rigorously tested in diverse marine environments, 
including challenging areas with varying signal strengths like dense mangroves and open seas. This testing 
validated the reliability and effectiveness of our IoT model under different environmental conditions.

Figure 2.  IoT Architectural Flow

Figure 3. IoT Device embedded on a Fisherman's Boat in Cogtong Bay 

(A) IOT device embedded on 
the boat (B) Actual IOT prototype

Data Capture: Fishermen, Species, and Geolocations
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Utilizing the IoT framework, we capture primary geospatial data from fishing boats in Cogtong Bay, 
Bohol, Philippines. Each IoT device, assigned a unique fishermanID, gathers and sends critical data to the 
central database every three minutes, including geolocation points, fishing activities, and environmental 
data like temperature and wind speed. This multi-faceted dataset offers an extensive view of the region's 
fishing practices and environmental dynamics, paving the way for informed fisheries management and 
ecological research.

Following this, Tables 1 and 2 showcase selected examples from the comprehensive datasets 
collected through our IoT framework. These samples provide detailed insights into the participants and 
their fishing activities, illustrating the type of data captured and demonstrating the functionality of our 
system. Please note that these tables show illustrative examples of those that encompass the entire 
dataset, which includes data from a total of 39 fishermen who participated in the study.

Table 1. Participants - Lists fishermen with their unique IDs, names, and associated boat numbers
Fisherman ID Fisherman Name Boat Number

FM001 Fisherman 1 2016-C-21340

FM002 Fisherman 2 2016-C-32141

FM003 Fisherman 3 2019-C-18712

FM004 Fisherman 4 2015-C-32123

FM005 Fisherman 5 2016-C-19812

FM006 Fisherman 6 2016-C-18234

FM007 Fisherman 7 2017-C-12343

FM008 Fisherman 8 2018-C-14756

FM009 Fisherman 9 2019-C-15356

FM010 Fisherman 10 2019-C-15432

Table 2. Fishing Records - Provides a detailed analysis of fishing activities, encompassing data on location, species 
caught, catch volume, and weather conditions, offering a comprehensive overview of specific fishing events

Fisherman 
ID

Latitude Longitude
Unique 
Species 

ID

Catch 
Volume 

(kg)
Timestamp

Weather Condition

Geolocation 
Temp (°C)

Atmospheric 
Pressure

Cloud Cover / 
Precipitation

Wind 
Speed (m/s)

FM010 9.6289 124.87 2 90 2019-06-03 
05:10:24

26 1010 Scattered 
Clouds

2.22

FM007 9.8354 124.633 2 10 2019-06-04 
06:20:20

27 1010 Overcast 
Clouds

4.99

FM010 9.87433 124.609 21 18 2019-06-01 
05:40:04

28.71 1010 Light Rain 5.67

FM006 9.87347 124.605 21 10 2019-06-06 
06:30:12

28.62 1011 Scattered 
Clouds

4.63

FM006 9.87464 124.61 66 17 2019-06-07 
06:06:14

29.49 Few clouds 4.92

FM006 9.87304 124.606 56 3 2019-06-13 
05:50:54

29.5 1009 Overcast 
Clouds

2.97

FM010 9.83694 124.643 56 50 2019-06-19 
05:23:54

28.85 1009 Overcast 
Clouds

1.36

FM006 9.87242 124.615 56 3 2019-06-19 
06:15:54

28.85 1008 Overcast 
Clouds

1.36

FM010 9.83855 124.646 56 59 2019-06-20 
05:54:05

28.53 1010 Light Rain 2.62

Amora, E. N. & Cuizon, J.
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These tables are instrumental in illustrating the practical application of our IoT framework in capturing 
and analyzing data, thereby contributing significantly to fisheries research and management.

Gathering Geospatial Data of Fishing Boats and Weather Conditions
Complementing this geospatial data is the real-time meteorological information fetched from the 

AccuWeather API. This data, synchronized with the boat's location, introduces an environmental context 
to the dataset. Upon reaching the central server, the data integrates into a web platform and a mobile 
interface for FLOs. Figure 4: Real-time Location Web Dashboard for Monitoring Fishing Boats aids FLOs in 
identifying and localizing the fishing boats, ensuring meticulous data logging upon their return.

Figure 4. Real-time Location Web Dashboard for Monitoring Fishing Boats

Additionally, the mobile application's robust tracking feature, showcased in Figure 5: Historical 
Tracking Feature on the Mobile Application, enables users to not only backtrace and pinpoint catch 
locations over specified periods but also to record and register detailed catch data. This integrated 
functionality allows fishermen and fish landing officers to efficiently log catches, capturing essential 
information such as species, volume, and precise geolocation. Figure 5 (A) shows the moving fishermen's 
real-time geolocations, displaying data on a map with icons and showing the fisherman's info when 
selecting the icon. Figure 5 (B) allows users to view historical routes taken by the boats over time, helping 
analyze fishing patterns and optimize future routes. Figure 5 (C) confirms the fishing location upon the 
boat's return, verified by FLOs to ensure accurate catch data. Figure 5 (D) logs the types of species caught 
and their respective weights, ensuring data integrity at the point of landing. Figure 5 (E) securely transmits 
catch data to the central server for analysis, with validation steps to ensure accuracy and completeness. 
Figure 6: Detailed View of Catch Data with Volume, Species, and Location Information offers a holistic 
perspective on the catch data, underlining critical parameters like volume and species type.

Figure 5. Historical Tracking and Record catch data feature on the Mobile Application
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Figure 6. Detailed View of Catch Data with Volume, Species, and Location

However, the research encounters specific limitations. The absence of comprehensive boat trajectory 
data restricts insights into detailed movement patterns of fishing boats. Additionally, the reach of IoT 
technologies to only a subset of boats in Cogtong Bay might introduce a potential bias in the data 
collected. A minor concern is the 5% variance in geolocation accuracy compared to commercial devices, 
which is primarily noticeable in dense mangrove areas. However, this variance is less critical as these 
areas are typically used for navigation, with the main fishing activities occurring in open areas where data 
precision is more reliable. Moreover, data from mobile applications and weather APIs might be affected 
by connectivity issues.

Despite these challenges, the research provides comprehensive insights into fishing patterns by 
integrating geospatial data with environmental conditions and catch details. This holistic methodology 
has been crucial in evaluating fishing efforts, clarifying the spatial distribution of marine assets, and 
assisting in making informed decisions for sustainable fisheries management.

Graham Scan Algorithm Process and its Contextual Significance
The Graham Scan algorithm stands out as an indispensable tool in marine data analysis. The 

significance of this study's adaptation of the Graham Scan is underscored by the data from 39 fishermen, 
encompassing 1,574 distinct geolocation points. A salient metric is that each fisherman contributes, on 
average, to approximately 40.36 geolocation points. To clarify:

•	 F represents the number of fishermen, marked as 39 in this study.
•	 G encapsulates the collective geolocation points, summing up to 1,574.
•	 By computing G/F, the average geolocation points attributed to each fisherman are around 40.36.
•	 Diving into the procedural mechanics, the Graham Scan algorithm operates predominantly in 

two stages:

Phase 1 - Sorting Points: The inception is marked by pinpointing P0, which holds the lowest 
y-coordinate. For tie-breaking, points with a lower x-coordinate are given priority. After this 
identification, the ensemble of points is systematically arranged based on their polar angles for 
P0. Duplicate curves lead to the retention of the distant end. A vital step in sorting is determining 
whether a convex hull can be formed; if mm (the resultant point count) is under three, the convex 
hull's formulation becomes untenable.

Phase 2 - Accept or Reject Points: An unoccupied stack, symbolized as SS, becomes the starting 
point, populated with the initial trio of sorted points. The orientation of the ensuing points plays 
a crucial role. A deviation from the counterclockwise direction triggers the extraction of the 

Amora, E. N. & Cuizon, J.
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stack's uppermost point, supplanted by the currently examined point. The culmination sees SS 
safeguarding the vertices that sketch out the convex hull.

A practical rendition of the Graham Scan algorithm, adapted for this study, is illustrated in the 
flowchart depicted in Figure 7. This concise diagram provides a function blueprint of the algorithm’s 
operation.

Figure 7. Flowchart illustrating the Graham Scan algorithm

Building on the foundational work of Lamot et al. (2003), although their study focuses on simple 
polygon triangulation, the essence of their work is deeply relevant to our research. Their academic efforts 
highlighted the computational efficiency of the Graham Scan. In the context of this study, the Graham Scan 
effectively transforms a vast array of geolocation data into a streamlined convex hull. This transformation 
accurately delineates each participant's fishing territories, emphasizing the critical boundary markers 
while minimizing potential internal discrepancies.

From a computational vantage point, the Graham Scan's keystone remains the sorting mechanism, 
bestowing it with a time complexity of O(N log N). This algorithmic voyage leads to the creation of a 
convex hull, a clear representation of each fisherman's area of operation, emphasizing the boundary 
markers. A stepwise schematic of this methodological approach is portrayed in Figure 8, which provides 
a systematic illustration of this process, highlighting its fundamental stages.

Figure 8. Visualization of Graham Scan Algorithm for Fisherman 10 - Showing the formation 
of the convex hull using actual data points (longitude, latitude)

Fish Catch Integration
To effectively quantify the average volume of catches and the average catch per trip within a given 

polygon, two distinct mathematical formulas have been formulated.
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Polygon Generation and Fish Catch Integration
This section outlines the methodology employed to define the fishing territories of each fisherman 

using polygons. These polygons are generated from the recorded geolocation points. The chosen 
instrument for this task is the Graham Scan algorithm, renowned for its efficacy in creating convex hulls.

As shown in Figure 9, individual maps have been curated for each fisherman, highlighting their 
unique fishing territories through polygonal shapes generated from their geospatial data.

.

Figure 9.  Individual Fishing Territories illustrated Through Convex Hulls

Web Analytics Dashboard
The culmination of extensive fishing activities and detailed data capture in Cogtong Bay, Bohol, has 

been encapsulated into an advanced web analytics dashboard. This dashboard was meticulously designed 
after the rigorous stages of data collection, processing, and integration, ensuring an interface that mirrors 
the depth of the research. It serves as a visual bridge, connecting users to the fishing industry's subtle 
spatial and quantitative dynamics.

In Figure 10, we present the Monthly Caught History Analytics. This graph reveals the patterns of 
fishing across the calendar, pinpointing fluctuations in catch volumes and their alignment with specific 
months. It magnifies the evident seasonal variations and the slight details, possibly indicating the 
influence of underlying ecological or environmental factors.

Amora, E. N. & Cuizon, J.
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Figure 10.  Monthly Caught History Analytics

In Figure 11, we delve deeper into the spatial patterns, showcasing Territorial Boundaries by Fishing 
Gear Type using the Graham Scan Algorithm. This algorithm efficiently converts geospatial coordinates 
into polygons or convex hulls to outline territories. Each distinct color represents a different fishing 
gear type, providing insights into fishermen's preferred areas. The map highlights overlapping and 
common regions, giving stakeholders a clear and data-rich geographic overview. Beyond mere boundary 
demarcations, this visual representation conveys insights into fishing gear choices, territorial dynamics, 
and potential environmental influences.

Figure 11.  Territorial Demarcation by Fishing Gear Type via the Graham Scan Algorithm

Lastly, Figure 12 closely links environmental factors to fishing activities. The interactive heat maps 
depict the connection between catch volumes and weather conditions. A dynamic date slider illuminates 
the evolving patterns of fishing activities, allowing users to transition between dates to view real-time 
fishing trends. Annotations underscore significant weather events, providing context to the visual data.

Figure 12.  Interactive Heat Maps showing the Weather Patterns & Fishing Activities
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In addition to the primary data collection methods, our study includes a comparative analysis of 
various fishing gears employed by the fishermen. Utilizing the data captured regarding gear types, catch 
volumes, and corresponding environmental conditions (weather, temperature), we aim to assess the 
effectiveness of each fishing gear. Statistical analyses performed determined correlations between gear 
types, catch volumes, and environmental factors. The analysis provides better understanding of how 
different fishing gears perform under varying weather conditions, including insights into optimal gear 
usage for sustainable fishing practices.

RESULTS AND DISCUSSION

Graham Scan Analysis
Our analysis, as detailed in Table 3, revealed significant insights. Notably, Gear ID 7 was associated 

with the highest catch volume (15,958 kgs) over an area of 2,081.6 hectares, despite being used by only 
3 fishermen. This suggests a high efficiency of this gear type in yielding substantial catches. In contrast, 
Gear ID 20, used by the most significant number of fishermen (14), covered the most extensive area 
(2,484.8 hectares) but resulted in a considerably lower total catch volume (3,202.4 kgs).

Gear IDs 9 and 2 also showed exciting patterns. Gear ID 9, used by 9 fishermen, covered a moderate 
area and yielded a substantial catch of 1,825.5 kgs. Conversely, Gear ID 2, despite being used by 10 
fishermen, resulted in a significantly lower catch (173.8 kgs) over a smaller area.

The least used gear, ID 26, employed by only 4 fishermen, covered the smallest area and yielded the 
lowest catch volume, indicating its limited effectiveness or specificity to certain fishing conditions.

The integration of local fishermen's knowledge was instrumental in interpreting these findings. Their 
insights provided vital context to understand the efficiency of different gear types in various environmental 
conditions. Complemented by the fishermen's expertise, the data-driven approach enabled a nuanced 
understanding of the fishing zones and gear effectiveness.

This study illustrates the synergy of advanced computational methods and traditional fishing 
knowledge, highlighting the need for a balanced approach incorporating technological and local 
expertise in fisheries management. The analysis of gear types, area coverage, and catch volumes provides 
a comprehensive understanding of the dynamics in play, underscoring the importance of tailored 
strategies in fisheries management.

Table 3. Analysis of Gear Type Effectiveness

Gear_id Total Area (hectare) Total Caught (kg) No. of Fisherman

7 2,081.6 15,958 3

20 2,484.8 3,202.4 14

9 338.2 1,825.5 9

2 224.1 173.8 10

26 18.8 80 4

Insights for Fishermen
A thorough analysis of species distribution and catch data provided significant insights for fishermen. 

‘Species ID 1’ was the most predominant, with an impressive total catch of 3,924.2 kilograms, followed by 
Species IDs 56, 78, 31, and 21, as indicated in Table 4.

Amora, E. N. & Cuizon, J.
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Table 4. Predominant Fish Species and Their Total Catch

Species ID Total catch in kilograms

1 3,924.2

56 2,491.4

78 1,968.5

31 1,479.9

21 1,407

82 1,301.8

109 843.9

77 744

116 664.5

117 621

In Table 5, the monthly data reveals Species 1's peak catches in March (1016.2 km) and May (1462.5 
km), along with notable catches in February (854 km) and July (304.5 km). Species 56, with a peak catch 
in January (1290.5 km) and a strong presence in June (454.9 km), emerges as another important species 
for targeted fishing.

Species 77 peaks in February (421 km), suggesting this is an optimal month for targeting this species. 
Species 78, with significant catches in July (62 km), September (128 km), October (285 km), and December 
(171.5 km), offers several periods for targeted fishing. Other species, such as 31 and 21, consistently 
appear in top catches across multiple months, indicating their potential as steady fishing targets.

Fishermen are, therefore, recommended to focus on Species 1 throughout the year, with additional 
emphasis on Species 56, 77, and 78 during their respective peak months to maximize their catch. This 
strategic approach is guided by observed catch patterns and promotes sustainable fishing practices.

Table 5. Monthly Peak Catches for Key Species
Month Recommended Species (IDs) Catch (kilograms)

January 56, 109, 1, 108, 77 1290.5, 642, 187, 106.5, 106

February 1, 77, 116, 61, 56 854, 421, 408.5, 214.8, 124

March 1, 117, 120, 82, 119 1016.2, 545, 515.5, 233.5, 202

April 31, 121, 25, 32, 24 152.4, 67, 45.7, 37.6, 36.8

May 1, 116, 56, 31, 121 1462.5, 256, 160, 142.4, 35

June 21, 56, 66, 31, 49 883, 454.9, 214, 114.1, 102.6

July 1, 31, 121, 27, 78 304.5, 99.9, 74.5, 64.7, 62

August 21, 77, 31, 27, 63 161, 110, 97.2, 58.1, 42.4

September 82, 78, 21, 56, 31 180, 128, 108, 61, 57.3

October 78, 31, 27, 85, 115 285, 53.5, 44.5, 32, 28

November 21, 77, 31, 27, 63 161, 110, 97.2, 58, 42.5

December 56, 31, 78, 38, 82 317, 197.6, 171.5, 71.4, 46.3
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Accuracy Evaluation Compared to Commercial GPS Devices
Evaluating IoT device efficacy through geolocation accuracy compared to commercial GPS devices 

was pivotal in this research. The aim was to analyze the previously estimated 5% variance in accuracy, 
notably in diverse environmental settings like open areas and mangrove-rich regions, including the 
impact of weather conditions on Received Signal Strength Indicator (RSSI) values.

Concurrent data collection from both the IoT and commercial-grade devices at identical locations 
enabled a comprehensive assessment of performance variance under varying environmental conditions. 
Meticulous comparison of coordinates from each device type, highlighted disparities or consistency in 
performance across these environments with a specific focus on how weather conditions affect the RSSI.

Figure 13 presents variances between the IoT devices and commercial counterparts. The impact 
of weather conditions on network signal strength was evident. For example, in dense mangroves and 
during adverse weather conditions, IoT devices relying primarily on 2G signals showed fluctuating RSSI 
values, affecting data transmission reliability. This is indicated by red dots, marking positions where the 
IoT devices in challenging environments like dense mangroves experienced reduced signal strength. In 
contrast, commercial devices, which in similar conditions often maintained more stable 3G signals, are 
represented by green dots in open areas with clear weather conditions, indicating locations where IoT 
devices consistently achieved stronger 3G signals, ensuring reliable data transmission.

Sensitivity and calibration of the GSM modules in IoT devices were recognized as factors contributing 
to the variance, exacerbated by weather conditions affecting signal strength. Therefore, a focus on 
continuous calibration and enhancements is essential, with future improvements to include advanced 
GSM modules and algorithmic adjustments to decrease variance and improve resilience to weather-
induced signal fluctuations. These initiatives balance cost-efficiency and precision, making the system 
practical for fisheries management where commercial devices are not feasible.

Figure 13.  Comparison of IoT Device Signal Strength with 2G and 3G Indicators

IoT Device Geolocation Tracking Performance in Variable Signal Environments
The performance of the IoT-based geolocation tracking system was critically dependent on the 

cellular network signal strength and reliability, which in turn was influenced by weather conditions. To 
evaluate this, we conducted tests in environments with contrasting network conditions — mangrove-
dense areas with 2G network limitations and open sea areas with stronger 3G network signals, under 
various weather scenarios.

As shown in Table 6, the tests revealed significant variations in data transmission intervals and success 
rates, correlating with the network type, signal strength (RSSI), and prevailing weather conditions. In 

Amora, E. N. & Cuizon, J.
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mangrove areas, especially during poor weather, the weaker 2G network led to inconsistent transmission 
schedules and lower success rates due to reduced RSSI values. In contrast, the open sea areas, typically 
with more stable weather, showed improved transmission regularity and higher success rates, attributed 
to stronger 3G network signals and higher RSSI values.

The variation emphasizes the importance of considering environmental factors and network 
infrastructure when deploying IoT systems in maritime settings, especially the impact of weather on 
signal strength. Our findings suggest prioritizing areas with stable 3G network coverage and employing 
adaptive technologies for consistent data transmission across varying network signals and weather 
conditions for reliable IoT-based marine data collection.

Table 6. IoT Geolocation Data Transmission Intervals Under Diverse Network Conditions

BoatID Latitude Longitude Timestamp RSSI Success Network

1 9.8402572 124.5314185 2023-08-01 06:15:49 -101 NO 2G

1 9.8402829 124.5314403 2023-08-01 06:18:51 -89 Yes 2G

1 9.8403074 124.5314577 2023-08-01 06:21:55 -97 No 2G

1 9.8403543 124.5315080 2023-08-01 06:24:60 -99 No 2G

1 9.8403834 124.5315107 2023-08-01 06:27:60 -81 Yes 2G

1 9.8404342 124.5315322 2023-08-01 06:30:13 -97 No 2G

1 9.8405307 124.53158249 2023-08-01 06:33:25 -73 Yes 3G

1 9.8405908 124.53161468 2023-08-01 06:36:19 -70 Yes 3G

1 9.8406206 124.53170319 2023-08-01 06:39:46 -65 Yes 3G

1 9.8407249 124.53183261 2023-08-01 06:42:47 -68 Yes 3G

1 9.8407520 124.53196001 2023-08-01 06:45:50 -67 Yes 3G

1 9.8410296 124.53214144 2023-08-01 06:48:55 -64 Yes 3G

Fishing Gear Effectiveness Analysis
In our examination of fishing gear effectiveness, significant variations in catch volumes were 

identified across different gear types under varied environmental conditions. As summarized in Table 
7, this data delineates these variations and highlights trends in gear performance relative to specific 
weather conditions and temperatures. Notably, Gear ID 7 demonstrated remarkable efficiency in overcast 
conditions and light rain. This analysis underlines the nuanced relationship between fishing gear selection 
and environmental conditions, providing valuable insights for optimizing catch yields in various weather 
scenarios.

This analysis demonstrates the nuanced interplay between fishing gear selection and environmental 
conditions, providing valuable insights for optimizing catch yields in varying weather scenarios.

Note: RSSI values are reported in dBm. Lower numbers indicate stronger signals. "Success" indicates whether the data transmission 
was successful.

Table 7. Summary of Fishing Gear Effectiveness Under Various Weather Conditions

Gear ID Total Catch (kilograms) Average Temperature (°C) Weather Condition

7 4,011.7 28.37 Overcast Clouds

7 3,809.4 27.63 Light Rain

7 2,233.5 28.48 Broken Clouds

2 177.6 27.92 Overcast Clouds
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Gear ID Total Catch (kilograms) Average Temperature (°C) Weather Condition

2 93.9 27.97 Broken Clouds

9 229.1 28.62 Broken Clouds

1 70 27.65 Overcast Clouds

7 1,644.4 28.34 Few Clouds

3 32 28.70 Moderate Rain

6 4 27.75 Moderate Rain

Table 7. (continued)

Algorithm Accuracy Evaluation
The primary objective was to ascertain the accuracy of the Graham Scan method in representing 

real-world fishing yields. Experts from the Bureau of Fisheries and Aquatic Resources (BFAR) were selected 
for this evaluation, as their deep understanding of fishing zones and activities would provide valuable 
insights into the algorithm's effectiveness.

Table 8 presents the outcomes of our interface evaluation. Key usability aspects such as design and 
visualization, navigation and functionality, and learnability and help resources were scrutinized, yielding 
impressive ratings. The dashboard's layout, color themes, text clarity, and visual elements scored a high 
at 4.6. Navigation ease and functionality received a 4.4, and the dashboard's learnability and availability 
of help resources were rated at 4.5. These results indicate an overall satisfactory user experience with an 
average usability rating of 4.5, underscoring the dashboard's user-friendly design.

Table 8. Interface Evaluation Outcome
Usability Test Areas Rating

Design and Visualization (Dashboard layout, color themes, text clarity, tabs, interactive 
elements, visual representations)

4.6

Navigation and Functionality (Navigating between dashboard sections, selecting options, 
locating tools and features)

4.4

Learnability and Help Resources (Grasping the provided guidelines, recalling features, 
generating visual data, Feedback Loop)

4.5

In our comprehensive evaluation detailed in Table 9, the Graham Scan algorithm's effectiveness in 
fisheries management, was rigorously examined. This assessment utilized the advanced spatial analysis 
capabilities of Turf.js, a JavaScript library designed for geospatial operations, along with GeoJSON-
formatted data. Turf.js is particularly adept at processing and analyzing spatial data, facilitating operations 
such as area measurement, centroid calculation, and polygon intersection.

For this evaluation, we rigorously compared the polygons generated by the Graham Scan algorithm 
with actual ground truth areas derived from in-field GPS data. These real-world data points were 
meticulously collected from the fishing activities of Fisherman 10, providing an accurate representation 
of active fishing zones. By tracking these zones via GPS during regular fishing operations and converting 
them into GeoJSON format, we established a factual basis for evaluating the algorithm's performance.

The analysis focused on the degree of similarity between the algorithm-generated polygons and 
the actual ground truth areas. We observed a high degree of accuracy in the algorithm's polygon 
formation, as evidenced by the close match between the area outlined by the Graham Scan algorithm 
(1,188.77 ha.) and the area derived from Fisherman 10's GPS data (1,519.11 ha.). The overlapping area of 
(1,164.55 ha.) further highlighted the algorithm's precision. Moreover, the minimal centroid distance of 
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0.409 kilometers between the algorithm-generated and actual ground truth polygons underscored the 
algorithm's precision in representing geolocation points within the convex hull.

Most notably, the overlap percentage of 97.96% in spatial-temporal data signifies the Graham 
Scan algorithm's exceptional proficiency in synchronizing spatial and temporal data, thus confirming 
its utility in accurately mapping fishing zones. As depicted in Figure 14, these findings show Fisherman 
10's spatial data in red and the ground truth data in green, affirming the Graham Scan algorithm's vital 
role in fisheries management. They showcase its robustness and reliability for comprehensive spatial 
and temporal analysis, ensuring that the algorithm is theoretically sound and practically effective in real-
world scenarios.

Table 9. Algorithm Accuracy Evaluation Outcome
Test Areas Results

Graham Scan Polygon Formation Accuracy

Area of Algorithm Polygon 1,188.77 ha.

Area of Ground Truth Polygon 1,519.11 ha.

Overlapping Area 1,164.55 ha.

Representation of Geolocation Points within Convex Hull

Distance Between Centroids 0.409 Km

Accuracy Assessment in Spatial-Temporal Data

Overlap Percentage (Based on Algorithm Polygon) 97.96% 

Figure 14.  Comparative Visualization of Graham Scan Algorithm Output and Ground 
Truth Data from Fisherman 10's GPS Tracking

Figure 15.  Five-Day Graham Scan Algorithm Testing Outcomes
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During the testing phase, as depicted in Figure 15, the algorithm's capability was further substantiated 
through a five-day real-world validation process. IoT devices onboard fishing boats collect geolocation 
data daily, which the Graham Scan algorithm processed to form and adjust the convex hulls dynamically. 
This continuous data collection tested the algorithm's consistency and resilience and its adaptability to 
the environmental variables and operational conditions typical in marine settings. The positive outcome 
of this validation process attests to the algorithm's robustness and its applicability for enhancing fisheries 
management practices.

Operational Effectiveness and Usability Testing
Following the algorithm accuracy evaluation, a thorough usability testing of the web and mobile 

application, iGAT 2.x (Interactive Geocoded-fisheries Assessment Tools), was conducted from August 1 to 
August 5, 2023. This phase was crucial for gathering feedback from end-users to refine the application's 
features. A diverse group of participants, including fishermen, fisheries management personnel, 
application program testers, and other key stakeholders, were involved in this real-world setting test.

During this period, users interacted with the application, executing tasks that mirrored their daily 
fishing and management activities. This hands-on experience provided valuable insights into user 
behavior, the ease of navigation within the application, and overall user engagement. Participants 
generally found the application intuitive and user-friendly, quickly adapting to its various functionalities. 
However, they also highlighted areas needing improvement, such as the requirement for more detailed 
help resources for certain complex features.

Feedback gathered during these sessions was pivotal in guiding subsequent enhancements. 
Suggestions for improving the dashboard's interactivity and adding customizable features to cater to 
the varying needs of different user groups were particularly influential. In response to this feedback, the 
application underwent significant updates. These updates included refining the dashboard layout for 
clearer data visualization and introducing a feature for customizing data displays according to individual 
preferences.

A notable update was the inclusion of more comprehensive reporting tools within the application, 
addressing user feedback that underscored the importance of such features for effective management 
and decision-making. Following these enhancements, the application was retested with the same 
group of end-users, who expressed greater satisfaction with the improved functionality, particularly the 
expanded reporting capabilities.

This iterative process of usability testing, incorporating direct user feedback, and refining the 
application underscores our commitment to developing tools that are not only technologically advanced 
but also practical and user-friendly for the fishing community. As a result, iGAT 2.x has emerged as a 
valuable asset in fisheries management, enabling users to make informed decisions based on real-time 
data and thorough analysis.

The comprehensive testing of our application yielded overwhelmingly positive results, reflecting its 
effectiveness and user-friendliness. An impressive 91% of testers rated the application as highly user-
friendly and accurate, a testament to its intuitive design and reliable performance. This feedback is 
invaluable for the ongoing refinement and enhancement of the application, ensuring that it continues to 
effectively meet and exceed the evolving needs of its users.

Additionally, a notable outcome of our research was the high accuracy level achieved by the Graham 
Scan algorithm. The algorithm demonstrated an impressive overlap percentage of 97.96% in spatial-
temporal data analysis. This high accuracy rate underscores the algorithm's capability in accurately 
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mapping fishing zones and representing geolocation points within the convex hull, further affirming its 
vital role in effective fisheries management.

Such high user satisfaction rates, combined with the remarkable accuracy of the Graham Scan 
algorithm, underscore the application's significant potential as an indispensable tool in fisheries 
management. Its capability to facilitate informed decision-making among fishermen, underpinned by 
real-time data and thorough analysis, positions it as a crucial asset in sustainable fisheries practices and 
data-driven management strategies.

These outcomes, marked by high user satisfaction and algorithmic accuracy, underline the 
application's potential as an indispensable tool in fisheries management. As reported by Anuchiracheeva 
et al., integrating local ecological knowledge with scientific tools like GIS has significantly enhanced 
fisheries management in regions such as Southeast Asia. The success of our application echoes these 
findings and demonstrates the potential for technology-driven solutions to enhance informed decision-
making, supported by real-time data and in-depth analysis, making it a vital asset for sustainable 
fisheries and data-driven strategies. This aligns with the global push towards more adaptive, localized, 
and sustainable fishing practices, suggesting that our application could serve as a model for future 
technological integrations in fisheries management worldwide.

CONCLUSION
This research effectively utilized the Graham Scan method in marine analytics, notably achieving 

the primary objective of identifying key fishing zones. The iGAT 2.x application, central to this study, 
underwent rigorous testing, and its results demonstrated robust functionality and user-friendliness. This 
was supported quantitatively by solid usability scores (average of 4.52) and a high acceptance rate (91%) 
from the marine community, indicative of its practical application in real-world settings.

Our analysis uncovered significant variations in the effectiveness of different fishing gears under 
varied environmental conditions. A key finding was the superior effectiveness of Gear ID 7 in certain 
weather patterns, suggesting that adapting gear choices based on weather forecasts could enhance 
fishing efficiency and promote sustainable practices.

Despite these achievements, we encountered challenges, including the absence of comprehensive 
boat trajectory data and minor discrepancies in geolocation accuracy. These areas highlight opportunities 
for future enhancements. Upcoming research efforts will focus on integrating more extensive oceanic 
data and improving the mobility and robustness of our technological solutions.

A promising direction for future exploration is the adoption of AI for predictive modeling in fisheries 
management. AI's potential to revolutionize the prediction and understanding of fishing zones is 
significant. However, the effectiveness of AI models is contingent upon the availability of extensive data. 
Our current data scope is somewhat limited for fully leveraging AI algorithms. Thus, a strategic effort to 
collect a more comprehensive dataset is crucial for the development and validation of precise AI models.

Further, we recognize the importance of engaging with the local community and authorities in our 
research efforts. We plan to conduct orientation seminars and workshops for stakeholders such as fish 
port officers and fishermen in collaboration with the LGU of Candijay. These sessions aim to disseminate 
the findings of our study, provide training on the use of the iGAT 2.x app, and promote responsible fishing 
practices aligned with sustainable fisheries management.

In conclusion, while this study lays a solid foundation for more informed and sustainable fishing 
strategies, there remains a significant avenue for additional research and development. The integration 
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of environmental factors with cutting-edge technological advancements continues to be a pivotal 
aspect of enhancing fisheries management strategies. Through continued research, collaboration, and 
technological innovation, we aim to contribute to the sustainable development of the fishing industry.
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