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Abstract 
 

In [6], for any torsion-free abelian groups G  and H , the kernel of H in G  is

 
 

fHG
GHHomf

ker,ker
,

  . The kernel of H  in G  is a pure fully invariant subgroup 

of G. A torsion-free abelian group G  is a kernel group if  MGGM ,ker for every 

pure fully invariant subgroup M of .G  This paper shall give further results and 
characterizations of the direct sum of a kernel and kernel groups of a torsion-free 
abelian group. 
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1.0 Introduction 

           In [6], given any torsion-free abelian groups G  and H , the kernel of H in G  is defined. Its 

algebraic and homological properties with respect to a short exact sequence are given. Moreover, in [6], 

the notion of the kernel of a torsion-free abelian group gives rise to the concept of the kernel group. The 

groups Z, Q, pure fully invariant-projective groups, almost completely decomposable groups and 

completely decomposable groups are some of the groups shown in [6] to be kernel group.          

           In this paper, we prove that the irreducible and the strongly irreducible groups are likewise kernel 

groups. Also, we characterize the direct sum of a kernel and kernel group of a torsion-free abelian 

group.     

           Throughout this paper, all groups considered are torsion-free and abelian. 

 

2.0 Preliminary Concepts and Known Results 

           We shall recall some concepts and known results found in the indicated reference that we need 

for the main results of this paper.   

Proposition 2.1 [4] If G  is a group and  IiM i :  is a nonempty family of subgroups of ,G  then 

i
Ii

M


  is a subgroup of .G  

Theorem 2.1 [4] If HGf :  is a homomorphism of groups, then Gf ker . Conversely, if GN  , 

the map NGG :  given by   aNa   is an epimorphism with kernel N called the canonical  

epimorphism or projection.   
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Definition 2.1 [3] A subgroup M of a group G  is fully invariant in G  if   MMf   for all 

 .GEndf   

Theorem 2.2 [2] A fully invariant subgroup of a fully invariant subgroup of A  is fully invariant in A . 

Definition 2.2 [2] Let  IiBi :  be a family of subgroups of A. Then the set    

                                        
  ZnBbbbbB iiniIi  and ,:     21 . 

Definition 2.3 [2] Let  IiBi :   be a family of subgroups of A  such that the following conditions hold;  

     i.   ABiIi   

    ii. for every Ii ,    .0, jijIji BB 
 

Then A is said to be the direct sum of its subgroups ,iB  denoted by iIi BA   or 

,    21 nBBBA   if  . ,    2, ,1 nI   
 

Theorem 2.3 [2] If BAG  , then every  AEndf   extends to an endomorphism of G  by 

assigning the image of the second component of elements of G  to 0. 

 

Lemma 2.1 [2] If CBG   and A  is a fully invariant subgroup ofG , then   

                                                               .CABAA     
 

Definition 2.4 [4] Let  IiBi :   be a set of groups. An thi  tuple      , ,   ibf  over this collection 

of groups iB  has exactly one coordinate ib  for each Ii , that is, if f  is a function defined over ,I  

then   ii Bbif   for every .Ii The set of all  thi  tuples is called the direct product of the groups 

,iB  denoted by   .iIi B  

 

Theorem 2.4 [2] Let  IiABA i   , ,  and  JjB j   be abelian groups. Then 

    i.       BABAHom iIiiIi ,,  

    ii.       jJjjJj BAHomBAHom ,, . 

 

Remark 2.4.1 [4] If I  is finite, then    .iIiiIi AA
 

 

Corollary 2.1 [4] Let  IiGi : and  IiNi :  be families of groups such that ii GN   for each 

.Ii  Then   Ii iIi i GN  and .iIi iIi iIi i NGNG  
  
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Theorem 2.5 [4] Let  iii HGf :  be a family of homomorphisms of groups and let  iff be the 

map  


Ii iIi i HG  given by     .iii afa  Then f is a  homomorphism of groups such that 

   


Ii iIi i HGf , 


Ii iff kerker  and .ImIm 


Ii iff  Consequently, f  is a 

monomorphism [respectively, epimorphism] if and only if each if  is. 

 

Definition 2.5 [2] An abelian group G  is said to be torsion if every element of G  has finite order. 

 

Example 2.5.1 Let A  be an abelian group and let  .:  xAxT Then T  is a subgroup of A  

called the torsion group of A . 

 

Definition 2.6 [2] An abelian group G  is torsion-free if every nonzero element of G  has infinite order. 

 

Example 2.6.1 The groups Z  and Q  are torsion-free since ,0nx  only if 0x  for all ,Zn  

Zx  or .Qx  

 

Definition 2.7 [2] A group G is divisible if nGG   for all .0  Zn  

 

Example 2.7.1 The groups  0  and Q  are divisible since    00 n  and nQQ   for all .Zn  

 

Definition 2.8 [2] A subgroup M of a group G  is said to be pure inG , denoted by GM * , if 

whenever Mnym  for some Zn , ,Gy  then there exists Mm 1  such that .1nmm   

Equivalently, M is pure in G  if and only if nMnGM  for all .Zn  

 

Example 2.8.1 Consider the group Z . Then  0  and Z  are the only pure subgroups of Z .  

 

Proof: For all Zn ,      000 nZn   and .ZnZnZ  Hence,  0  and Z  are pure subgroups 

of Z . Consider ZmZ   for some .Zm  Then for all Zn ,   mZnZmZn   if   .1,gcd mn  

But for all Zmn, ,  mn,gcd  is not always equal to 1. Thus  0  and Z  are the only pure subgroups 

of Z . ■  
Example 2.8.2 The group of rational numbers Q  has no proper nontrivial pure subgroups. 

 

Proof: Let   .0 * QH   Then nHnQH  for all .Zn  Since Q  is divisible, nQQ   for all 

.Zn  Hence, .HQHnQH    Thus, ,nHH   that is, H is divisible, by Definition 2.7. Let 

H
b

a
 ,  0, Zba . Then HbH   and so .aHH

b

a
ba 








  Thus, there exists Hh  such 
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that aha   for some .Hh  Hence, .1 Hh   Since ,nHH  nHHn
nn











11
 for all 

.0 Zn  This implies that H
n


1
 since H is torsion-free. Therefore, .QH  ■ 

 

Theorem 2.6 [2] Let ,B  C  be subgroups of A  such that .ABC   Then the following hold. 

 

    i. If C  is pure in B  and B  is pure in A , then C  is pure in A . 

   ii. If B is pure in A , then CB  is pure in .CA  

  iii. If C  is pure in A , CB pure in ,CA  then B  is pure in A . 

 

Definition 2.9 [2] A subgroup B  of A is a direct summand of A  if CBA   for some .AC   

 

Theorem 2.7 [2] Every direct summand is a pure subgroup and in torsion-free groups, the intersection of 

pure subgroups is again pure.  

 

Definition 2.10 [1] A group G  is said to be irreducible if it has no proper nontrivial pure fully invariant 

subgroups. 

 

Example 2.10.1 The groups Z  and Q  are irreducible.  

 

Definition 2.11 [5] For any groups G  and ,H  we say that  

   i. G  is quasi-contained in H 










HG  if HnG   for some ;0  Zn  

   ii. G  is quasi-equal to H 










HG  if HG


 and .GH


  

 

Definition 2.12 [5] A group G  is said to be strongly irreducible if G is quasi-equal to each of its 

nontrivial fully invariant subgroups. 

 

Remark 2.12.1 A strongly irreducible group is irreducible. 

Proof: If H is a nontrivial fully invariant subgroup of a strongly irreducible group G, then  HnG  for 

some positive integer n . If in addition, GH * , then nGHnGnH    for all .Zn  Since H is 

torsion-free,  GH  . Thus, a strongly irreducible group is irreducible. ■ 

 

            The following concepts and results pertain to the kernel and kernel group of torsion-free abelian 

group.  
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Definition 2.13 [6] For any torsion-free abelian groups G  and H , the kernel of H in G  is  

                                                  
 

fHG
GHHomf

ker,ker
,

  .  

 

Example 2.13.1 Consider the group of integers Z and Z0 . The kernel of 0  in Z  is 

                                                  
  

ZZ
ZHomf


 0,

0,ker   

since if   ,0,ZHomf     0xf  for all Zx . Also, since   0,ZHomiZ   with  0 ker Zi  and 

  fker0   for all  ZZHomf , , the kernel of Z in Z  is  

                                                  
 

 .0,ker
,


 ZZHomf

ZZ   

 

Example 2.13.2 Given the group of rational numbersQ , observe that the kernel of 0  in Q  is 

                                                   
  

QQ
QHomf


 0,

0,ker   

since if   ,0,QHomf     0xf  for all Qx . Also, the kernel of Q in Q  is  

                                                  
 

 0,ker
,


 QQHomf

QQ   

since  QQHomiQ ,  with  0 ker Qi  and   fker0   for all  QQHomf , . 

 

             The preceding examples can be generalized as follows. 

 

Example 2.13.3 For any torsion-free abelian groupG , the kernel of  0  in G  is 

                                                   
  

fG
GHomf

ker0,ker
0,

   

                                                                  G  

                                                  

since for all   ,0,GHomf     0gf  for all Gg  and the kernel of G in G  is  

                                                  
 

 0,ker
,


 GGHomf

GG   

since  GGHomiG ,  with  0 ker Gi  and   fker0   for all  .,GGHomf   

Proposition 2.2 Let G and H  be any torsion-free abelian groups. Then  HG,ker is a pure fully 

invariant subgroup ofG . 

  

Proof:   Let G and H  be any torsion-free abelian groups. By Theorem 2.1 and Proposition 2.1, 

,ker Gf i  where  HGHomf i ,  for each i . Thus, by Definition 2.13,  

                                ,ker, GfHGKer i     HGHomf i ,  for each .i   

Claim 1:   .,ker * GHG   
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           Suppose that  HGny ,ker  with Gy  for some .Zn  Then fny ker  for all 

 ., HGHomf   That is, for all  HGHomf , ,    .0 ynfnyf   This implies that   0yf , 

since 0n  and H is torsion – free. So, fy ker  for all  HGHomf , . Thus, 

 HGfy ,kerker  ,  HGHomf , . Therefore,   GHG *,ker  , by Definition 2.8. 

Claim 2:  HG,ker  is fully invariant in .G  

          Let  GEnd  and   .,ker GHGy  Then for all  HGHomf , ,   0yf  and 

 HGHomf , . Thus,      0 yfyf   and hence    HGy ,ker . ■ 

 

Definition 2.14 [6] A torsion-free abelian group G  is a kernel group if  MGGM ,ker for every 

pure fully invariant subgroup M ofG .  

 

Example 2.14.1 The groups Z  and Q are kernel groups since their only pure fully invariant subgroups 

are the trivial ones and itself with    ,00,ker ZZ    ZZZZ ,ker  and    ,00,ker QQ  

  .,ker QQQQ   
 

Lemma 2.2 Let BAG   where GBA *,   and let M be a pure subgroup of .G  Then AM   and 

BM   are pure in A  and in ,B respectively. 

 

Proof: Clearly,    AMnAAMn    for all .Zn  Let  AMnAx  . Then, nAx  and 

.AMx   So, nax   for some ,Aa ,Mx and .Ax  Since ,nGx .nMMnGx   Thus, 

nMnax   or Ma  since M is torsion-free. Hence, AMa   and so  AMnnax   

which implies that    AMnAMnA    for all .Zn  Therefore,    AMnAAMn    

and .* AAM   Similarly, .* BBM  ■ 

 

 

 

 

                  

3.0 Main Results 

We first give and show that the irreducible and strongly irreducible groups are kernel groups.  

Proposition 3.1 If G  is an irreducible group, then G  is a kernel group. 

Proof: Suppose G  is irreducible group. Then by Definition 2.10,  0  and G  are the only pure fully 

invariant subgroups ofG . But       0,ker0,ker  GGGG  and 



7 
 

                                                GGGGG  0,ker,ker , by Example 2.13.3.  

Therefore,  G  is a kernel group. ■  
 

Proposition 3.2 A strongly irreducible group is a kernel group. 

 

Proof: A strongly irreducible group G is irreducible, by Remark 2.12.1. Hence, by Proposition 3.1, G  is a 

kernel group. ■ 

 

The following lemma considers the property of a kernel of torsion-free abelian group. 

 

Lemma 3.1 For any torsion-free abelian groups A, B, C and D where BD   and ,AC   

                                         .,ker,ker,ker DBBCAADCBABA   

Proof: Let     DCBABAx  ,ker . Then ifx ker  for each i ,   

                                               ., DCBABAHomfi   

Hence,   0xf i  for each .i  By Theorem 2.4 and Corollary 2.1, 

            DCBABHomDCBAAHomDCBABAHom  ,,,  

           .,,,, DBBHomCABHomDBAHomCAAHom   

Note that for 2 ,1j  if the map jji NGf :  given by jj ng   is a homomorphism of groups then 

by Theorem 2.5, the map     


2

1

2

1

2

1
:

j j j jjj NGf given by 2121 nngg    is also a 

homomorphism of groups. Hence, the map DBAf :1 is not defined since 1GA   and .2NDB   

Similarly the map CABf :2  is also not defined since 2GB   and .1NCA   Thus, 

   0, DBAHom  and    0, CABHom . And so,  

            .,,, DBBHomCAAHomDCBABAHom   

Hence, 
21 iii fff   with  CAAHomf i ,

1
  and  .,

2
DBBHomf i   Thus, if ,bax   

      xf0  

          baff ii 
21

 

               bfafbfaf iiii 2211
   

                      bfaf ii 21
00    
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           bfaf ii 21
   

with   0
1

af i  for all 1i  and   0
2

bf i  for all .2i  Hence, 
1

ker ifa  and 
2

ker ifb  for all 1i  and .2i  

Thus,  

        
21

kerker ii ffbax    

                             DBBCAA ,ker,ker  .  

Thus,         .,ker,ker,ker DBBCAADCBABA   On the other hand, suppose 

   .,ker,ker DBBCAAy  Then 21 yyy  ,  CAAy ,ker1  and  DBBy ,ker2  . Hence, 

 CAAHomffy jj ,,ker
111   and 

2
ker2 jfy  ,  DBBHomf j ,

2
 . This implies that 

  011
yf j  for all 1j  and   022

yf j , for all .2j  Thus, 

                                     21212121 221121
yfyfyfyfyyfyyf jjjjjj   

                    21 2121
yffyff jjjj   

                 2121
yyff jj   

with     DCBABAHomff jj  ,
21

 since  ., DCBADBCA  And so, 

    02121 21
 jjj fyyfyyf   for each ,j      DCBABAHomf j  , . Hence, 

,ker jfy  that is,     DCBABAy  ,ker  and 

        .,ker,ker,ker DCBABADBBCAA   

Therefore,         .,ker,ker,ker DBBCAADCBABA  ■ 

 

 The next results characterize the kernel group with respect to its direct sum. 

Theorem 3.1 Let G be a kernel group. If KHG   and H is fully invariant in ,G then H is a kernel 

group. 

Proof: Suppose KHG   such that G is a kernel group and H  fully invariant in .G  Let A  be a pfi

subgroup of H . Since ,* GH  by Theorem 2.6, A  is pure in .G Also, A  is fully invariant in H and H

is fully invariant in ,G  by Theorem 2.2 A  is fully invariant in .G  So, by Definition 2.14 and Lemma 3.1, 

                                                         AGGA ,ker  

                 AKHKH  ,ker  
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                   .,ker,ker AKKAHH   

Since HA  and  0KH  , then AK  is not defined. Thus, there are no nonzero maps from K  to 

AK , that is,    0, AKKHom . Thus,  AHHA ,ker . Therefore, H  is a kernel group. ■ 

 

Theorem 3.2 If KHG   where H  and K are kernel groups, then G is a kernel group. 

 

Proof: Suppose KHG   where H  and K are kernel groups. Then by Theorem 2.7, ., * GKH   

Let A  be a pure fully invariant subgroup of .G  Then by Lemma 2.1,    .KAHAA    By 

Theorem 2.7, HA  and KA are pure in .G So, By Lemma 2.2, HHA * and .* KKA  Let 

   GEndHEndf  and    GEndKEndg  by Theorem 2.3. Then   HAHAf   and 

  KAKAg   since A   is fully invariant in .G   Thus, HA and KA  are fully invariant in H  

and ,K respectively. Since H  and K are kernel groups, by Definition 2.14 and Lemma 3.1 

          KAHAA      

                              AKKKAHHH  ,ker,ker    

                  .,ker AKAHKHKH    

Therefore, it follows thatG  is a kernel group. ■ 

 The following corollary shows that the direct sum of a collection of a finite number of kernel 

groups is again a kernel group.  

Corollary 3.1 Let G  be a torsion-free abelian group and  mGGG  ,    , , 21  a collection of kernel groups. 

If .1 i
m
i GG   then G is a kernel group. 

Proof: Suppose .1 i
m
i GG  Then we proceed by induction on .m  If 2m , then 21 GG  is a kernel 

group by Theorem 3.2. Suppose for ,2k i
k
i G1  is a kernel group. Then we need to show that  

i
k
i G1

1

  is a kernel group. Since   11

1
1 

  ki

k
ii

k
i GGG  with i

k
i G1  and 1kG  as kernel groups, 

it follows from Theorem 3.2 that i
k
i G1

1

  is a kernel group. Therefore, by Principle of Mathematical 

Induction, G is a kernel group. ■ 

 

 The following corollary gives a characterization for the direct sum of collection of kernel groups. 

  

Corollary 3.2 Let ,iGG  iG fully invariant in G for all i . Then G  is a kernel group if and only if iG  is 

a kernel group.  
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Proof: Suppose G  is a kernel group. Since iGG   and each iG  is fully invariant in ,G  by Theorem 

3.1, each iG  is a kernel group. Conversely, if each iG  is a kernel group then by Corollary 3.1, iG  is a 

kernel group. Therefore, it follows that G  is a kernel group. ■ 

 

4.0 Conclusions 

 

    In this paper, we have shown that irreducible and strongly irreducible groups are also a kernel 

groups. On the other hand, the concepts of kernel and kernels groups also hold on the direct sum of 

kernel and kernel groups of torsion-free abelian groups. In general, we have established that if G is a 

torsion-free abelian group and mGGG  ,    ,, 21   a collection of kernel groups and if i
m
i GG 1 , then  

G is a kernel group. Consequently, if  iGG  , where iG  fully invariant in a torsion-free abelian group 

G  for all i ,  then G  is a kernel group if and only if iG  is a kernel group. 
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