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Abstract

In [6], for any torsion-free abelian groups G and H , the kernel of H in G is

ker(G, H ) = N ker f . The kernel of H in G is a pure fully invariant subgroup
feHom(H,G)

of G. A torsion-free abelian group G is a kernel group if M = ker(G, G/M )for every

pure fully invariant subgroup M of G. This paper shall give further results and
characterizations of the direct sum of a kernel and kernel groups of a torsion-free
abelian group.
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1.0 Introduction

In [6], given any torsion-free abelian groups G and H, the kernel of Hin G is defined. Its
algebraic and homological properties with respect to a short exact sequence are given. Moreover, in [6],
the notion of the kernel of a torsion-free abelian group gives rise to the concept of the kernel group. The
groups Z, Q, pure fully invariant-projective groups, almost completely decomposable groups and
completely decomposable groups are some of the groups shown in [6] to be kernel group.

In this paper, we prove that the irreducible and the strongly irreducible groups are likewise kernel
groups. Also, we characterize the direct sum of a kernel and kernel group of a torsion-free abelian
group.

Throughout this paper, all groups considered are torsion-free and abelian.

2.0 Preliminary Concepts and Known Results

We shall recall some concepts and known results found in the indicated reference that we need
for the main results of this paper.

Proposition 2.1 [4] If G is a group and {I\/Ii e I} is a nonempty family of subgroups of G, then
(1 M; is a subgroup of G.

icl

Theorem 2.1 [4] If f :G — H is a homomorphism of groups, then ker f <G. Conversely, if N <G,
the map 7:G — G/N given by ﬂ(a)z aN is an epimorphism with kernel N called the canonical

epimorphism or projection.



Definition 2.1 [3] A subgroup M of a group G is fully invariant in G if f(M)< M for all
f e End(G).

Theorem 2.2 [2] A fully invariant subgroup of a fully invariant subgroup of A is fully invariantin A.

Definition 2.2 [2] Let {Bi el } be a family of subgroups of A. Then the set
ic1 Bi z{b1+b2 +---+b, :b, € B;,and neZ+}.

Definition 2.3 [2] Let {Bi el } be a family of subgroups of A such that the following conditions hold;

D i Bi=A
ii. for every i el ) BI ﬂz jel, j=i BJ :{0}.
Then A is said to be the direct sum of its subgroups B;, denoted by A=,

iel Bi or
A=B ®B,®---®B,,if | ={L2,---,n}

Theorem 2.3 [2] IfG=A®B, then every f e End(A) extends to an endomorphism of G by

assigning the image of the second component of elements of G to 0.

Lemma 2.1 [2]If G=B®C and A is a fully invariant subgroup of G, then
A=(ANB)®(ANC)

Definition 2.4 [4] Let {Bi e I} be a set of groups. An in tuple f = (~~~,bi ,) over this collection

of groups B; has exactly one coordinate b; for each i €1, thatis, if f is a function defined over I,

then f(i): b, € B, for every i € |.The set of all i tuples is called the direct product of the groups
B;, denoted by H ic1 Bi-

Theorem 2.4 [2] Let A,B, A (i 1) and B, (j € J) be abelian groups. Then
I Hom(C-Biel A\ ’ B) = H iel (AI ’ B)
ii. Hom(A ] ;= B;)=]T jes Hom(A B; ).

Remark 2.4.1 [4] If | is finite, then Z a A= H a A

Corollary 2.1 [4] Let {G, :iel}and {N;:ie |} be families of groups such that N; < G; for each

iel. Then [ [ Ni <[ Giand [T Gi/TTo Ni =TT, Gi/Ni-



Theorem 2.5 [4] Let {f; : G, — H, } be a family of homomorphisms of groups and let f = [ ] fi e the
map Hiel G, —)Hiel H; given by {ai }H {fi(ai )}.Then f is a homomorphism of groups such that
f(Hia G, )C I, H:, kerf=]]_kerf, and Imf=][_ Imf. Consequently, f is a

monomorphism [respectively, epimorphism] if and only if each fi is.
Definition 2.5 [2] An abelian group G is said to be torsion if every element of G has finite order.

Example 2.5.1 Let A be an abelian group and let T = {X € A:|X| <oo}.Then T is a subgroup of A

called the torsion group of A.

Definition 2.6 [2] An abelian group G is torsion-free if every nonzero element of G has infinite order.

Example 2.6.1 The groups Z and Q are torsion-free since Nx=0, only if X=0 for all neZ™,
VXxelZ or VxeQ.

Definition 2.7 [2] A group G is divisibleif G=nG forall 0zneZ”.
Example 2.7.1 The groups {0} and Q are divisible since {O}z n{O} and Q=nQ forallneZ".

Definition 2.8 [2] A subgroup M of a group G is said to be pure inG, denoted by M <. G, if
whenever m=ny € M for some neZ”, yeG, then there exists m, € M such that m=nm,.

Equivalently, M is purein G ifand onlyif M NG =nM forallne Z~.

Example 2.8.1 Consider the group Z . Then {O} and Z are the only pure subgroups of Z .

Proof: Forall ne Z*, n{0} = {0} =nZ N {0} and NZ =nZ NZ.Hence, {0} and Z are pure subgroups
of Z . Consider MZ < Z forsome Me Z*. Then forall ne Z*, n(mZ)=nZ NmZ if ged(n,m)=1.

Butforall nnmeZ*, gcd (n, m) is not always equal to 1. Thus {O} and Z are the only pure subgroups
ofZ.m

Example 2.8.2 The group of rational numbers Q has no proper nontrivial pure subgroups.

Proof: Let {0}7’: H<.Q. Then HNNQ=nH for all neZ". Since Q is divisible, Q =nQ for all
NneZ". Hence, HNNQ =HNQ=H. Thus, H =nH, thatis, H is divisible, by Definition 2.7. Let

%e H, abeZ —{0}. Then bH =H and so a= b[%) e H =aH. Thus, there exists he H such
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that a=ah for some heH. Hence, h=1eH. Since H=nH,£:(£]neH:nH for all
n n

1
0#neZ. Thisimplies that — e H since H is torsion-free. Therefore, H = Q. m
n

Theorem 2.6 [2] Let B, C be subgroups of A such that C < B < A. Then the following hold.

i.1f C ispurein B and B ispurein A, then C is purein A.
ii. If Bispurein A, then B/C is purein A/C.
iii. If C is purein A, B/C pure in A/C, then B is purein A.

Definition 2.9 [2] A subgroup B of Ais a direct summand of A if A=B@®C forsome C <A

Theorem 2.7 [2] Every direct summand is a pure subgroup and in torsion-free groups, the intersection of
pure subgroups is again pure.

Definition 2.10 [1] A group G is said to be irreducible if it has no proper nontrivial pure fully invariant
subgroups.

Example 2.10.1 The groups Z and Q are irreducible.

Definition 2.11 [5] For any groups G and H, we say that

i. G is quasi-contained in H (Gg H] if NG H forsome 0=neZ™;

i. G is quasi-equal to H (GéH) if G;H and H ;G.

Definition 2.12 [5] A group G is said to be strongly irreducible if G is quasi-equal to each of its
nontrivial fully invariant subgroups.

Remark 2.12.1 A strongly irreducible group is irreducible.
Proof: If H is a nontrivial fully invariant subgroup of a strongly irreducible group G, then NG < H for

some positive integer N. If in addition, H <. G, then nH =nGH =nG forall neZ". Since H is

torsion-free, H = G. Thus, a strongly irreducible group is irreducible. m

The following concepts and results pertain to the kernel and kernel group of torsion-free abelian
group.



Definition 2.13 [6] For any torsion-free abelian groups G and H , the kernel of H in G is

ker(GH)= N kerf.
feHom(H,G)

Example 2.13.1 Consider the group of integers Z and <O> < Z.The kernel of <0> in Z is
ker(z,(0))= N =z

feHom(Z,{0})
sinceif f e Hom(Z, {0}), f(X): 0 forall Xe Z. Also, since i, € Hom(Z,{O}) with keri, = {0} and
{O}C ker f forall f e Hom(Z,Z), the kernel of Zin Z is
ker(z,z)= N ={o}.

feHom(Z,2)

Example 2.13.2 Given the group of rational numbers Q, observe that the kernel of {0} in Q is
ker@Q{0)= N =Q

feHom(Q,{0})
sinceif f e Hom(Q,{O}), f(X): 0 forall x e Q. Also, the kernel of Qin Q is
ker(@QQ)= N ={0}
feHom(Q,Q)

since i, € Hom(Q, Q) with ker i, = {0} and {0} c ker f forall f € Hom(Q,Q).

The preceding examples can be generalized as follows.

Example 2.13.3 For any torsion-free abelian group G , the kernel of {0} in G is

ker(G,{0}) = feHorQ(G o) ker f

=G

since forall f e Hom(G,{O}), f

(g)=0forall g €G and the kernel of G in G is
ker(G,

G)= N ={o}

feHom(G,G)
since ig € Hom(G,G) with ker ig = {0} and {0} c ker f forall f € Hom(G,G).
Proposition 2.2 Let Gand H be any torsion-free abelian groups. Then kel‘(G, H)is a pure fully

invariant subgroup of G .

Proof: Let Gand H be any torsion-free abelian groups. By Theorem 2.1 and Proposition 2.1,
Nker f; <G, where f; € Hom(G, H) for each i. Thus, by Definition 2.13,

Ker(G,H)=Nker f, <G, f; e Hom(G,H) for each i.
Claim 1: ker(G,H)<. G.



Suppose that ny e ker(G, H) with yeG for some neZ". Then nyekerf for all
f € Hom(G,H). That is, for all f € Hom(G,H), 0= f(ny)=nf(y) This implies that f(y)=0,
since N#0 and His torsion - free. So, yekerf for all fe Hom(G, H). Thus,
ye(ker f = ker(G, H ), fe Hom(G, H ) Therefore, ker(G, H)S* G, by Definition 2.8.
Claim 2: kel‘(G, H) is fully invariant in G.

let acEnd(G) and yeker(G,H)<G.Then for all feHom(G,H), f(y)=0 and
fa e Hom(G, H). Thus, f(a(y))= fa(y)=0 and hence a(y)eker(G,H). =

Definition 2.14 [6] A torsion-free abelian group G is a kernel group if M = kel‘(G,G/l\/l)for every
pure fully invariant subgroup M of G .

Example 2.14.1 The groups Z and Q are kernel groups since their only pure fully invariant subgroups

are the trivial ones and itself with ker(Z,Z/(O)):{O}, ker(Z,Z/Z)zz and ker(Q,Q/<O>)= {0},
ker(Q.Q/Q)=Q.

Lemma 2.2 LetG = A@ B where A B <. G and let M be a pure subgroup of G. Then M () A and
M (B are purein A andin B, respectively.

Proof: Clearly, n(M ﬂA)g nAﬂ(M ﬂA) forall neZ%. Let xe nAﬂ(M N A). Then, X € NA and
Xxe M A So, X=na forsome ac A, XeM,and X e A Since XenG, XxenG(1M =nM.Thus,
X=naenM or a€M since Mis torsion-free. Hence, a€ M A and so x=naen(MNA)

which implies that NAN(M N A)cn(M NA) forall ne Z™". Therefore, n(M N A)=nAN(M N A)
and M (N A<x A Similarly, M(1B <« B.m

3.0 Main Results
We first give and show that the irreducible and strongly irreducible groups are kernel groups.
Proposition 3.1 If G is an irreducible group, then G is a kernel group.

Proof: Suppose G is irreducible group. Then by Definition 2.10, {0} and G are the only pure fully
invariant subgroups of G . But ker(G,G/{O}): ker(G,G): {0} and



ker(G,G/G)= ker(G, {0}): G, by Example 2.13.3.

Therefore, G is a kernel group. m
Proposition 3.2 A strongly irreducible group is a kernel group.

Proof: A strongly irreducible group G is irreducible, by Remark 2.12.1. Hence, by Proposition 3.1, G is a
kernel group. m

The following lemma considers the property of a kernel of torsion-free abelian group.
Lemma 3.1 For any torsion-free abelian groups A, B, Cand D where D < B and C < A,
ker(A® B,(A® B)/(C ® D))= ker(A, A/C)@ ker(B, B/D).
Proof: Let X € ker(A@ B,(A@ B)/(C @ D)) Then X € ker f; foreach i,
f, e Hom(A®B,(A®B)/(C ® D))

Hence, fi (X): 0 for each i. By Theorem 2.4 and Corollary 2.1,
Hom(A® B,(A®B)/(C @ D))= Hom(A,(A® B)/C & D)® Hom(B,(A® B)/(C @ D))

= Hom(A, A/C)@® Hom(A, B/D)@® Hom(B, A/C)® Hom(B, B/D).
Note that for j =1, 2 if the map f; :Gj — Nj given by g; > n; is a homomorphism of groups then

2 2 2
by Theorem 2.5, the map ijl fJ- : Zj:lGi - ijl N; givenby g; +g, >N +n, isalsoa

homomorphism of groups. Hence, the map f; : A— B/Dis not defined since A=G,; and B/D = N,,.
Similarly the map f, : B — A/C is also not defined since B =G, and A/C = N;. Thus,
Hom(A, B/D)={0} and Hom(B, A/C)={0}. And so,

Hom(A® B,(A® B)/(C ® D))= Hom(A, A/C)® Hom(B, B/D).
Hence, f; = f, + f; with f, e Hom(A, A/C)and f; e Hom(B,B/D). Thus, if x=a+b,
0= f(x)
=(f, +f, Na+b)
= f,(a)+ f, (b)+ f; (a)+ f; (b)

= f,(@)+0+0+f, (b)



- 1,@)+ 1, 0)

with f; (a)=0 forall i, and f, (b)=0 forall i,. Hence, a € ker f, and b eker f; foralli; and i,.
Thus,

x=a+beker f; ®Nker f,
= ker(A, A/C)®ker(B, B/D).

Thus, ker(A@ B, (A@ B)/(C O] D)) c ker(A, A/C)@ ker(B, B/ D). On the other hand, suppose

y € ker(A, A/C)@ker(B,B/D) Then y =y, +VY,, ¥, € ker(A, A/C)and y, < ker(B,B/D). Hence,
ypekerf; f; e Hom(A, A/C) and y, < ker fi,, fj, € Hom(B, B/D). This implies that
f;(y)=0 forall jyand f; (y,)=0,forall j,. Thus,

Fi O+ y2)+ £, +y2)= f (v)+ i (v2)+ £, (v)+ £, (v2)
:(fjl + 1, Xy1)+(fh + 5, Xy2)
=(f, + 5, v+ v2)
with f; +f; eHoM(A®B,(A®B)/(C®D)) since  A/C,B/DcA®B/C®D.And so,

fjl(yl+y2)+ sz(y1+y2): f; =0 for each j, f;e Hom(A®B,(A®B)/(C ®D)). Hence,
y eker f;, thatis, y e ker(A® B,(A® B)/(C ® D)) and

ker(A, A/C)@ker(B,B/D)c ker(A® B,(A®B)/(C ® D))

Therefore, ker(A® B,(A® B)/(C ® D)) = ker(A, A/C)®ker(B,B/D).m

The next results characterize the kernel group with respect to its direct sum.

Theorem 3.1 Let G be a kernel group. If G=H @K and H is fully invariant in G,then H is a kernel
group.

Proof: Suppose G = H @ K such that G is a kernel group and H fully invariantin G. Let A be a pfi
subgroup of H . Since H <. G, by Theorem 2.6, A is purein G.Also, A is fully invariantin H and H
is fully invariant in G, by Theorem 2.2 A is fully invariant in G. So, by Definition 2.14 and Lemma 3.1,
A=ker(G,G/A)
=ker(H ®K,H ®K/A)



=ker(H,H/A)@ ker(K,K/A).

Since A<Hand HNK = {0}, then K/A is not defined. Thus, there are no nonzero maps from K to
K/A, that is, Hom(K, K/A)= 0}. Thus, A= ker(H, H/A). Therefore, H is a kernel group. m

Theorem 3.2 I1f G=H @ K where H and K are kernel groups, then G is a kernel group.

Proof: Suppose G =H @ K where H and K are kernel groups. Then by Theorem 2.7, H,K <. G.
Let A be a pure fully invariant subgroup of G. Then by Lemma 2.1, A=(AﬂH)(—B(Aﬂ K). By
Theorem 2.7, A(1H and A K are pure in G.So, By Lemma 2.2, A[1H <. H and A K <. K.Let
f e End(H)< End(G)and g € End(K) < End(G)by Theorem 2.3. Then f(ANH)< ANH and
g(Aﬂ K)g AN Ksince A is fully invariant inG. Thus, A(1H and A K are fully invariant in H

and K, respectively. Since H and K are kernel groups, by Definition 2.14 and Lemma 3.1
A=ANH®ANK

=ker(H,H/(H N A))@ker(K,K/(K N A))
=ker(H ®K,(H®K)/(HNA®KNA)).

Therefore, it follows that G is a kernel group. m

The following corollary shows that the direct sum of a collection of a finite number of kernel
groups is again a kernel group.

Corollary 3.1 Let G be a torsion-free abelian group and {Gl, Gz, e Gm }a collection of kernel groups.

If G =®[;G;. then G is a kernel group.

Proof: Suppose G =@, G;.Then we proceed by induction on m. Ifm =2, then G; ® G, is a kernel
group by Theorem 3.2. Suppose for K > 2, @!(:1 G, is a kernel group. Then we need to show that
1 G, is a kernel group. Since ®% G. = (®ik=1 G )@ G,,; with ®, G, and G, ,, as kernel groups,

it follows from Theorem 3.2 that @!‘:11 G; is a kernel group. Therefore, by Principle of Mathematical

Induction, G is a kernel group. m

The following corollary gives a characterization for the direct sum of collection of kernel groups.

Corollary 3.2 Let G = ®G;, G,; fully invariant in G for alli. Then G is a kernel group if and only if G; is

a kernel group.



Proof: Suppose G is a kernel group. Since G = ®G; and each G; is fully invariant in G, by Theorem
3.1, each G; is a kernel group. Conversely, if each G; is a kernel group then by Corollary 3.1, @ G; is a

kernel group. Therefore, it follows that G is a kernel group. m
4.0 Conclusions
In this paper, we have shown that irreducible and strongly irreducible groups are also a kernel

groups. On the other hand, the concepts of kernel and kernels groups also hold on the direct sum of
kernel and kernel groups of torsion-free abelian groups. In general, we have established that if G is a

. . m
torsion-free abelian group and {Gl!GZ’ T Gm} a collection of kernel groups and if © = @1 Gi | then
G is a kernel group. Consequently, if G =®G;, where G; fully invariant in a torsion-free abelian group

G forall i, then G is a kernel group if and only if Gj is a kernel group.
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