
Construction of Difference Sets from Unions of Cyclotomic 
Classes of Order N=14

Abstract
Let G be an additive group of order v, D be a non-empty proper k-subset of G, and λ 

be any integer. Then D is a (v, k, λ) - difference set if every nonzero element of the group 
can be expressed as a difference d1 - d2 of elements of D in exactly λ ways. Let q be a 
prime of the form q = nN + 1 for integers n>1 and N>1. For q<1000, this study shows 
the construction of difference sets in the additive group of the field GF(q) from unions of 
cyclotomic classes of order N = 14 using a computer search. The construction consisted 
of computer programs derived from the definitions and theorems on difference sets 
using Python. The results revealed that only the union of seven cyclotomic classes such 
as C0

(14, q) ∪ C2
(14, q) ∪ C4

(14, q) ∪ C6
(14, q) ∪ C8

(14, q) ∪ C10
(14, q) ∪ C12

(14, q) forms a quadratic 
cyclotomic difference set. Similarly, this union together with zero forms a difference set 
equivalent to the modified quadratic cyclotomic difference sets.

Keywords: difference set, cyclotomic class, union, computer search

1.0 Introduction
The study of difference sets are of intrinsic 

interest because they have several applications to 
real-world problems. It is found that difference sets 
can be used to construct complex codebooks which 
have important applications in communication 
systems. In engineering and science contexts, 
difference sets are used for optical alignment, 
interpreting signals in the presence of noise, 
imaging astronomical events, constructing error-
correcting codes, and facilitating processes in 
quantum informatics. 

Difference sets connect other areas of 
mathematics such as Algebra, Combinatorics, and 
Geometry. It also uses tools from group theory, 
number theory, representation theory, and other 
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areas. For instance, in Combinatorics, it is closely 
related to design theory which was originally 
studied for its connection to statistics and the 
design of experiments. In geometry, one can create 
a specific geometric structure like the Fano plane 
(Moore & Pollatsek, 2013).

A powerful and classical method for 
constructing difference sets in the additive groups 
of finite fields is cyclotomic construction. This 
construction uses cyclotomic classes of finite fields 
to produce difference sets. To define cyclotomic 
classes, let q be a prime power of the form q = 
nN + 1 for two positive integers n,N > 1, and let 

α be a fixed primitive element of GF(q). The Nth 
cyclotomic classes Ci

(N,q) of GF(q) is defined by

, where 0≤i ≤ N-1. 
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That is, C0
(N,q) is the subgroup of GF(q)* consisting 

of all nonzero Nth powers in GF(q), and Ci
(N,q) = αⁱ 

C0
(N,q), for 1 ≤ i ≤ N–1. If q is a prime, the elements 

of C0
(N,q) are called the Nth power residues; in the 

cases N = 2, 3, 4, 5, 6, 8, these residues are called 

quadratic, cubic, quartic (or biquadratic), quintic, 

sextic and octic residues, respectively.

If the nonzero Nth -power residues is a   

 -difference set in (GF(q),+), then it is 

called an Nth -cyclotomic difference set or Nth 

-power residue difference set. If the Nth -power 

residues together with zero is a 

-difference set in (GF(q),+), then it is called a 

modified Nth -cyclotomic difference set or modified 

Nth -power residue difference set.

Lehmer (as cited in Momihara et al. (2019)) 

proved that a single cyclotomic class C0
(N,q) forms 

a difference set in (GF(q),+)  if and only if N=2, 
4, or 8, and q satisfies certain conditions. On the 

other hand, there have been very few results on 

the existence of difference sets using unions of 

cyclotomic classes. Details are presented in the 

next section.

In this work, the researcher shows the 

construction of cyclotomic difference sets from 

unions of suitable cyclotomic classes of order 

N=14 (with and without the residue zero) of the 

finite field GF(q), where q is a prime of the form 

q = 14n+1 for integer n>1 using an exhaustive 

computer search. Also, the obtained difference 

sets are classified based on their equivalence to 

the known cyclotomic and modified cyclotomic 

difference sets.

2.0 Methodology

Preliminaries
In order to determine valid parameters for the 

existence of a difference set, the following theorem 
was used in the construction. The proof can be 
found in Moore and Pollatsek (2013).

Theorem 2.1: If D is a (v, k, λ)-difference set, 
then k(k–1) = λ(v–1).

The concept of difference function was also 
utilized in verifying the resulting difference sets. 
The difference function diffD(x) of a subset D 
of (G,+) is defined as diffD(x) = |D ∩ (D+x)|, x 
∈ G, where D+x = {y+x ∶ y ∈ D}. In terms of the 
difference function, a subset D of size k in an 
abelian group (G,+) with order v is called a (v, k, 
λ)-difference set in (G,+) if the difference function 
diffD(x)= λ for every nonzero x ∈ G (Ding, 2015).

Now, what it means for two difference sets to 

be equivalent? Given the difference set D = {d1, ..., 
dk} then for any integer s, the set D+s = {d1+ s, ..., 
dk+s} taken modulo v is also a difference set, called 

a shift of the set D. For any integer t, with gcd(t, v) 
= 1, the set tD = {td1, ..., tdk} taken modulo v is also 

a difference set with the same parameters v, k, λ. If 

D1 = tD2 + s for some t, s, with gcd(t, v) = 1, then 

the two difference sets D1, D2 are called equivalent. 

If gcd(t, v)= 1 and tD= D+s for some s, then t is 

called a multiplier of the difference set D (Baumert 

& Fredricksen, 1967).
Definition 2.2: A primitive element α of a finite 

field GF(q) is a generator of the multiplicative group 
GF(q)* of nonzero elements of GF(q).

The following theorem was applied to efficiently 
calculate all the primitive elements of a finite field. 
The reader is referred to Estrella (2019) for the proof.
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Theorem 2.3: Let q be a prime power. Let α and 

q be relatively prime positive integers. The element 

α is a primitive element of GF(q) if and only if α(q-

1)⁄p ≠1 for each prime factor p of q–1.

The following lemma shows that it is sufficient 

for the theory of cyclic difference sets to consider 

even values of N (Beth et al., 1999).

Lemma 2.4: Let q = nN+1 be an odd prime 

power. If a union of cyclotomic classes of order N 
forms a difference set, then n is odd and N is even.

Cyclotomic Difference Sets

Consider first the problem when a cyclotomic 

class  Ci
(N,q), where i is some integer such that 0 ≤ i 

≤ N–1, is a difference set in (GF(q),+). Since Ci
(N,q)= 

αⁱ C0
(N,q), it is enough to consider the cyclotomic 

class C0
(N,q) to check if a single cyclotomic class 

forms a difference set. According to the survey 

by Momihara et al. (2019), Paley proved and 

completed the case when N= 2 and Chowla settled 

the problem in the case when q is prime and N= 4.

The following collected results when N= 2, 4, 

6, and 8 can be found in Momihara et al. (2019), 

Xia (2018), and Ding (2015) and will be referred 

to when determining the equivalence types of 

difference sets in the construction.

Theorem 2.5: Let GF(q) be the finite field of 

order q, where q is a power of an odd prime p. Let 

N ≥ 2 be an even divisor of q – 1, and C0
(N,q) be the 

subgroup of GF(q)* of index N.

1. When N= 2, C0
(2,q) is a quadratic 

cyclotomic difference set in (GF(q),+)  

with parameters (q, (q–1)⁄2, (q–
3)/4) if and only if q ≡ 3 (mod 4).

2. When N= 2, C0
(2,q) ∪{0} is a modified 

quadratic cyclotomic difference set 

in (GF(q),+)with parameters (q, 
(q+1)/2, (q+1)/4) if and only if q ≡ 
3 (mod 4).

3. When N=4, C0
(4,q) is a quartic 

cyclotomic difference set in (GF(q),+) 

with parameters (q, (q–1)/4, (q–
5)/16) if and only if q= 4t2 + 1 and t 

is odd.

4. When N= 4, C0
(4,q) ∪{0} is a modified 

quartic cyclotomic difference set 

in (GF(q),+) with parameters (q, 
(q+3)/4, (q+3)/16) if and only if q= 
4t2 + 9 and t is odd.

5. When N= 6, C0
(6,q) is never a difference 

set in (GF(q),+).

6. When N= 8, C0
(8,q) is an octic 

cyclotomic difference set in (GF(q), 

+) with parameters (q, (q–1)/8, 

(q–9)/64) if and only if q = 8t2+1 = 
64u2+9 for odd t and odd u.

7. When N= 8, C0
(8,q) ∪{0} is a modified 

octic cyclotomic difference set 

in (GF(q),+) with parameters (q, 
(q+7)/8, (q+7)/64) if and only if q 
= 8t2+49 = 64u2+441 for odd t and 

even u.

The first construction of difference sets using 

unions of cyclotomic classes is due to Hall (1956). 

The difference sets arising from the theorem below 

are usually called the Hall sextic residue difference 

sets.

Theorem 2.6 (Hall): Let q be an odd prime 

power of the form q = 4x2+27 for some integer 

x. Then C0
(6,q) ∪ C1

(6,q) ∪ C3
(6,q) is a (q, (q–1)⁄2, 

(q–3)⁄4) difference set in (GF(q),+).

Estrella
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In 1965, Hayashi made a similar difference set 

search using cyclotomic classes of order N=10. His 

results were summarized in the theorem below.

Theorem 2.7 (Hayashi): Let D be a cyclic 

difference set in (GF(q),+), where q is a prime 

congruent to 1 modulo 10, which admits the 

10th-powers as multipliers. Then we have (up to 

equivalence) one of the following two cases:

i. q ≡ 3 (mod 4) and D consists of the 

quadratic residues, or

ii. q = 31 and D = C0
(10,q) ∪ C1

(10,q).

In 1967, Baumert and Fredricksen found that 

there are six inequivalent (127,63,31)-difference 

sets which all arise as unions of cyclotomic classes 

for N=18. In 2012, Feng and Xiang discovered new 

infinite families of Hadamard difference sets in 

(GF(q),+)  by using a union of cyclotomic classes 

of order N = 2p1
m, where p1≡ 7 (mod 8) is a prime. 

Then Momihara (2013) gave a generalization of 

Feng-Xiang skew Hadamard difference sets. In 

2015, Feng et al. generalized the construction of 

skew Hadamard difference sets to the case N = 
2p1

m, where p1≡ 3 (mod 8) is a prime.

Recently, Balmaceda and Estrella (2021) 

constructed difference sets from unions of 

cyclotomic classes of orders N = 12, 20, and 24. 

Moreover, their search also yielded six modified 

(127, 64, 32)-difference sets from unions of 

cyclotomic classes of order N = 18.

Computational Procedure

For the computational procedure, the search 

method was adopted from the algorithms of 

(Balmaceda & Estrella, 2021). Given an input prime 

q, the method finds all difference sets from unions 

of two or more cyclotomic classes of GF(q) with 

or without zero. The search is performed for all 

primes q < 1000 of the form q = 14n + 1. Lastly, 

it is determined whether the obtained difference 

sets, if any, are equivalent to known cyclotomic 

difference sets, as described in Theorems 2.5.

Computer programs were written using 

Python that performs the following steps for given 

inputs N = 14 and q.

1. Choose a primitive element α of 

GF(q).

2. Compute the cyclotomic classes 

Ci
(14,q) using the chosen primitive 

element.

3. Take the union of C0
(14,q) with a 

second cyclotomic class and test if the 

obtained set forms a difference set.

4. If no difference set is found, repeat 

steps 1–3 using a different primitive 

element until a difference set is 

obtained or until the primitive 

elements of GF(q) are exhausted. 

5. Repeat steps 1–4 using the union 

of C0
(14,q) with another cyclotomic 

class, until all unions of C0
(14,q) 

with a second cyclotomic class are 

exhausted. 

6. Repeat steps 1–5, this time using 

C0
(14,q) with two other cyclotomic 

classes, then C0
(14,q) with three other 

cyclotomic classes, and so on up to 

C0
(14,q) with thirteen other cyclotomic 

classes.

7. For each difference set obtained, 

check its equivalence with the known 

cyclotomic difference sets.

To search for modified cyclotomic difference 

sets, the same steps will be applied but include 

zero in the unions.
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First determine all primes q < 1000 of the form 
14n+1. By Lemma 2.4, it is enough to consider only 
odd values of n. The function prime_numbers (N) 
is created to list all the primes less than 1000 and 
congruent to 1 modulo 14.  The code is given in 
Figure 1. This function will be called in the main 
program at the latter part of this section. Lines 2-14 
is a function which checks if the number q is prime 

or not. Lines 16-23 will return all prime numbers 
less than 1000 satisfying the desired form.

Next, create the function primElts(q) to find 
all the primitive elements of GF(q) for each prime 
q using Theorem 2.3. As noted by Ding (2015), 
the primitive element employed to define the 
cyclotomic classes may have to be chosen properly. 
See Figure 2 below for the sample code.

Figure 1. Prime Numbers of the Form 14n + 1

Figure 2. Primitive Elements

Estrella
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For steps 1 to 4, write another function diff_
set(parameters) to compute the 14th-cyclotomic 

classes Ci
(14,q) using a primitive element, take their 

unions and test the existence of difference sets. 
Start with combination of two classes and continue 
up to unions of 13 classes. To illustrate this, the case 

of seven classes of order 14 will be discussed. The 

classes can be represented by C0
(14,q) ∪ Ci₁

(14,q) ∪ 
Ci₂

(14,q) ∪ Ci₃
(14,q) ∪ Ci₄

(14,q) ∪ Ci₅
(14,q) ∪ Ci₆

(14,q), 
where 0 < i1< i2 < i3 < i4 < i5 < i6 ≤ 13. The source 

codes of the function are given in Figure 3 and 

Figure 4. 
From Figure 3, the function primElts(q) in line 

2 was called to list all the primitive elements. In 
line 3, the program will choose the first primitive 
element in the list (Step 1). The cyclotomic classes 
will be computed in lines 4-32 (Step 2). For step 
3, the first combination of cyclotomic classes will 
be computed in line 33.  The obtained union will 
be tested using the codes in lines 37-59 of Figure 
4 if it will form a difference set. For step 4, if no 
difference set is found, the program will choose 
the next primitive element. Using the second 
primitive element, the cyclotomic classes will 
again be computed. Then, the same union will be 

considered and will be tested for the existence of 
difference set. Steps 1 to 4 will be repeated until the 
primitive elements of GF(q) are all exhausted. After 
that, the next set of unions will be tested using the 
code in the main program. The same procedure 
will be executed until the possible unions of seven 
classes are all exhausted. 

If there exists a difference set, the function diff_
set(parameters) will return the obtained difference 
set. Then, the next set of union will be considered 
until all the possible unions of seven classes are 
exhausted.

Finally, the main program in Figure 5 is 
needed to execute all the possible unions of seven 
cyclotomic classes and test each prime q < 1000. 
In line 3, the function prime_numbers(N) was 
called to list all primes q of the form q = 14n + 1 
for some odd integer n > 1. In line 14, the function 
diff_set(parameters) was called to form the union 
and test the existence of difference sets.

If there exist difference sets, create another 
code to test the equivalence of two or more 
difference sets. For illustration, the following code 
in Figure 6 determines if the difference sets D1, D2, 
..., Dn are equivalent to the known difference sets 
D, as described in Theorem 2.5.

Figure 3. Union of seven cyclotomic classes
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Figure 6. Test for Equivalence

Figure 4. Test for the existence of difference sets

Figure 5. Main Program

Estrella
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3.0 Results and Discussion

Let q < 1000 be a prime of the form q = 14n 
+ 1 for n > 1 and odd. Table 1 summarizes the 

parameters v, k, λ, the index set I, and the conditions 

for q in which the set D = ⋃i∈ICi
(14,q) forms a 

difference set in the additive group GF(q). The class 

that indicates the family to which the difference set 

belongs is also included in the table. 

Table 1. Difference Sets from Unions of Cyclotomic Classes of Order N = 14

(v, k, λ) Index Set I Conditions 
for q Class

(q, (q–1)⁄2, (q–3))⁄4) I = {0,2,4,6,8,10,12} q ≡ 3 (mod 4) Paley Type

(q, (q+1)⁄2, (q+1)⁄4) I = {0,2,4,6,8,10,12} with 0 q ≡ 3 (mod 4) Modified 
Paley Type

When the index set I contains 0, 2, 4, 6, 8, 10, 
and 12 the union of Ci

(14,q) forms a (q, (q–1))⁄2, 
(q–3)⁄4) -difference set if q ≡ 3 (mod 4). This 
difference set is equivalent to quadratic cyclotomic 
difference sets which are often called Paley type. 
Similarly, when 0 is added to the same union, it also 
forms a difference set with parameters (q, (q+1)⁄2, 
(q+1)⁄4) satisfying the same condition for q. The 
obtained difference set belongs to the modified 
quadratic cyclotomic difference sets or modified 
Paley type. These results are summarized in the 
following theorem.

Theorem 3.1 Let  q < 1000 be a prime of the 
form q = 14n + 1 for n > 1 and odd. Then,

i. The set D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) 

∪ C6
(14,q) ∪ C8

(14,q) ∪ C10
(14,q) ∪ 

C12
(14,q) is a difference set in (GF(q),+) 

with parameters (q, (q–1)⁄2, (q–3)⁄4)  
where q ≡ 3 (mod 4), which contains 
quadratic residues.

ii. The set D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ 

C6
(14,q) ∪ C8

(14,q) ∪ C10
(14,q) ∪ C12

(14,q) 

∪ {0} is a difference set in (GF(q),+) 

with parameters (q, (q+1)⁄2, (q+1)⁄4) 
where q ≡ 3 (mod 4), which contains 
quadratic residues together with zero.

The following are some examples of difference 
sets generated from unions of cyclotomic classes of 
order N = 14. The elements of the set, parameters 
and equivalence type are also provided.

Example 3.2 Let q = 43, and let the primitive 
element α = 3. Then

D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ C6

(14,q) ∪ C8
(14,q) 

∪ C10
(14,q) ∪ C12

(14,q)

   = {1,4,6,9,10,11,13,14,15,16,17,21,23,24,25
,31,35,36,38,40,41}

is a (43, 21, 10)-difference set in (GF(43),+). 
This difference set is the same as the quadratic 
cyclotomic difference set  C0

(2,43).
Example 3.3 Let q = 71, and let the primitive 

element α = 7. Then

D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ C6

(14,q) ∪ 
C8

(14,q) ∪ C10
(14,q) ∪ C12

(14,q)

    = {1,2,3,4,5,6,8,9,10,12,15,16,18,19,20,24,
25,27,29,30,32,36,37,38,40,43,45,48,49,
50,54,57,58,60,64}

is a (71, 35, 17)-difference set in (GF(71),+). 
This difference set is the same as the quadratic 
cyclotomic difference set  C0

(2,71).
Example 3.4 Let q = 43, and let the primitive 

element α = 3. Then
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D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ C6

(14,q) ∪ C8
(14,q) 

∪ C10
(14,q) ∪ C12

(14,q) ∪ {0}
   = {0,1,4,6,9,10,11,13,14,15,16,17,21,23,24,

25,31,35,36,38,40,41}
is a (43, 22, 11)-difference set in (GF(43),+). This 
difference set is the same as the modified quadratic 
cyclotomic difference set  C0

(2,43) ∪ {0}.
Example 3.5 Let q = 71, and let the primitive 

element α = 7. Then

D = C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ C6

(14,q) ∪ C8
(14,q) 

∪ C10
(14,q) ∪ C12

(14,q) ∪ {0}
   = {0,1,2,3,4,5,6,8,9,10,12,15,16,18,19,20, 24, 

25,27,29,30,32,36,37,38,40,43,45,48,49, 
50,54,57,58,60,64}

is a (71, 36, 18)-difference set in (GF(71),+). This 

difference set is the same as the modified quadratic 

cyclotomic difference set  C0
(2,71) ∪ {0}.

4.0 Conclusion

Based from the findings, if q a prime congruent 

to 3 modulo 4 and of the form q = 14n + 1 for n > 1 
and odd, a (q, (q–1)⁄2, (q–3)⁄4)- difference sets in 

(GF(q), +) can be constructed by taking the union 

of cyclotomic classes C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) 

∪ C6
(14,q) ∪ C8

(14,q) ∪ C10
(14,q) ∪ C12

(14,q) which is 

equivalent to quadratic cyclotomic difference sets. 

Similarly, a (q, (q+1)⁄2, (q+1)⁄4)-difference sets in 

(GF(q),+) can be constructed by taking the union 

of cyclotomic classes C0
(14,q) ∪ C2

(14,q) ∪ C4
(14,q) ∪ 

C6
(14,q) ∪ C8

(14,q) ∪ C10
(14,q) ∪ C12

(14,q) ∪ {0} which 

is equivalent to modified quadratic cyclotomic 

difference sets. The same results were obtained 

from the constructions of Feng and Xiang (2012), 

and Momihara (2013).

More so, the study only focused on the detailed 

construction of cyclotomic difference sets using 

unions of cyclotomic classes of order 14 for the 

stated values of q < 1000 using an exhaustive 

computer search. The reader may adopt the codes 

for higher bounds for q. It is desirable to generalize 

the results for all primes and prime powers q of the 

form q = nN + 1 for N = 14 using other theoretical 

methods without computer search.
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