
Abstract
This paper provides an approximate analytic solution to the three species Lotka – 

Volterra differential equations by symbolic regression. The approximate analytic solution 
through symbolic regression is made as close as desired to the actual analytic solution by 
using the Jacobian system. This is proposed as the equilibrium will be stabilized if and only 
if the real parts of each of the eigenvalues are negative. As a result, the symbolic regression 
approach is found to provide an approximation to the faster convergence that can be 
expected with a more refined Euler numerical approach.
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1.0 Introduction
The famous Lotka – Volterra model is a pair of 

differential equations representing the populations 
of predator-prey species that interact with each 
other. The model was individually proposed in 
1925 by Lotka (1925) and Voltera (1926). Suppose 
that the model extends the two-species model 
and considers the three-species model with one 
species at the bottom of the food chain, one in the 
middle, and one at the top Chauvet et al. (2002). 
Let these species be x, y, and z and denote the 
differential equations modeling their behavior by:
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(1)

where x(t) represents the population of 
the species at the bottom of the food chain the 
producer and y(t) represents the population of 
the species in the middle of the primary consumer 
and z(t) represents the population of the top 
of the food chain or the predator.  Equation (1) 
is independent in the sense that the right-hand 
side is not explicitly expressed in terms of time. 
The Lotka–Volterra predator-prey model (Volterra, 
1926), is used to study a differential equation 
system with diffusion and time delays which model 
the dynamics of predator-prey interactions within 
three biological species (Wei, 2007). Pekalski and 
Stauffer (1998) studied of the dynamics of three-
species predator-prey models with time delays. 
Early studies such as those by Guerrero et al. (2009) 
focused on obtaining analytical solutions for the 
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transport equations, whereas recently numerical 
solutions have become increasingly popular using 
widely available computer software.

Regardless of the rising number of Lotka 
– Volterra applications, this model is a minor 
generalization of the two-species model: it adds 
a third species, but it only allows for a chain of 
predation. Still, considerable interest remains in 
analytical solutions because they may be used as 
relatively simple screening models in regulatory 
decision making by Devireddy (2016); Regalado 
and Castillano (2019), and because analytical 
solutions may serve as benchmarks for testing 
numerical solutions.

Since 1970s, there have been some interesting 
and impressive results to the analytic solution 
on the dynamics of three species predator-prey 
systems. In the past years, Hsu et al. (2015) analyzed 
the three species Lotka–Volterra food web model 
with omnivore which was defined as feeding 
on more than one trophic level. Pontedeiro et al. 
(2007) obtained solutions on a finite domain using 
a semi-analytical approach to perform sensitivity 
analyses and risk assessments of technologically 
enhanced, naturally occurring radioactive material 
(TENORM) disposed in an industrial landfill. The 
paper solved the decay chain problem using a 
semi-analytic approach known as the Generalized 
Integral Transform Technique (GITT), which is a 
generalization of the Classic Integral Transform 
Technique, or CITT (Cotta & Mikhailov, 1993). 
Recently, Cassol et al. (2009) combined GITT and 
CITT techniques with Laplace transforms and 
matrix diagonalization methods to develop an 
analytical solution for transient two-dimensional 
atmospheric pollutant dispersion on a semi-infinite 
spatial domain.

There are many papers focused on obtaining 
analytical solutions for the transport equations, 

whereas more recent numerical solutions have 
become increasingly popular using widely 
available computer software.  However, there is no 
closed-form shown that analytic solution to this 
three-species predator-prey model exists in the 
literature. The analytic solutions are still a problem 
for the three species Lotka–Volterra Equation. 
Hence, this paper intends to find approximate 
analytic solutions to the Extended Lotka – Volterra 
equations.

2. 0 Three-Species Model
Suppose that Lotka – Volterra model would be 

extended from the two-species model into a three-
species model with one species at the bottom of 
the food chain, one in the middle, and one at the 
top. Let these species be x, y, and z and denote the 
differential equations modeling their behavior by 
equation (1).

The three – species model is a very minor 
generalization of the two-species model: it adds 
a third species, but it only agrees for a chain of 
predation (i.e. this model does not agree us to 
consider the case where both y and z prey on x or 
where x and y are at the bottom of the food chain 
and z preys on both).

Simplified Solution of the Three-Species Model
To find the balances of this model, the 

researcher considers the values x, y, z for which               
fdsdadsadsadasda  Thus:

(2)

This model has related parameters as the 
classic model: x has a growth rate denoted by ax 
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while y and z have a natural death rate denoted by 
–γy and –φz, respectively. δxy and μyz denote 
the growth rate of y and z from hunting their prey 
and –βxy and –σyz denote the death rate of the 
prey as a result of being hunted. It is interesting to 
note that the authors chose to give species y a death 
rate (the negative sign in front of – γy) instead of a 
growth rate in the absence of a predator z.

Qualitative Solutions Using Equilibrium Points
Without expressly solving the differential 

equations, the equilibrium points can be analyzed. 
Equilibrium points are points for which the 
derivatives with respect to time are zero. Thus, for 
the classical Lotka-Voltera model illustrates:

which yields:

The first solution comes when the two 
species become nonexistent. The second solution 
represents a set point at which the populations 
sustain their present number indefinitely. The 
Jacobian matrix  of the LV model is given by

(3)

(4)

Likewise, for the trivial equilibrium position (0, 
0, 0), of the three species Lotka - Volterra model, 
we consider the case where (a – βy) = (μy – φ) 
= (δx – γ – σz) = 0. The  y=α/β=φ/μ. Therefore, a 
second equilibrium position exists only when the 
constant parameters μα = φβ.

The Jacobian of the system was proposed. 
Taking the appropriate partial derivatives,  it has 
been found that:

(5)

The system will have an asymptotical order 
solution if and only if all the real parts of the 
eigenvalues of the Jacobian are negative. Consider 
the roots of the characteristic equation of the 
above Jacobian, given by

(6)

To attempt the order of an equilibrium 
position (x, y, z) of a system with constants a b, 
etc. by working these values into the Jacobian and 
finding the eigenvalues. The equilibrium will be 
stabilized if and only if the real parts of each of the 
eigenvalues are negative.

Numerical Finite Difference Method
Let x be the bottom species or producer 

density, y be the middle species or primary 
consumer density and z be the top species or 
predator density, thus:

(7)

where βxyz is the interaction rate between 

the species, βxyzz is the effective rate of eating 

bottom species, γ is the mortality rate of the 
predators, K and k are the carrying capacitance of 
each population. x has a growth rate denoted by 
ax while y and z have a natural death rate denoted 
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by –γy and –φz, respectively,  δxy and σyz denote 
the growth rate of y and z from hunting their prey 
and –βxy and –σyz denote the death rate of the 
prey as a result of being hunted.

Example: Let x=100, y=100, z=100. Then, 
a=15, γ=0.05, δ=0.09, K=500, k=0.82, β=0.01, 
φ=1.9, σ=0.5, x(0)=100, y(0)=100, z(0)=100

The Euler’s recursive relation is,

(8)

where s(i–1) in the equation (8) represent of the 
slope of every species and ∆t represent of the 
change of time.

This leads to the recurrence:

(9)

3.0 Three-Species Model using Symbolic 
Regression Approach

The symbolic regression approach is a type 
of regression analysis that searches the space of 
mathematical expressions to find the model that 
best fits a given data set. No model is provided 
as a starting point to the algorithm. Instead, 
initial expressions are formed by randomly 
combining mathematical building blocks such 
as mathematical operators, analytic functions, 
constant, and state variables. New equations are 
then formed by recombining previous equations, 
using genetic programming.

The values are then entered into symbolic 
regression software with generated ordered pairs 

{(t_i,x_i )}_n for the population of the species at the 

bottom, {(t_i,y_i )}_nfor the population of the species 

at the middle and {(t_i,z_i )}_n for the population of 
the species at the top. Let ti= ih, i=0, 1,2,…,n, and 
step size h, where h = 0.001.

T Producer Primary 
Consumer Top Predator

0 100 100 100

0.001 96.2 99.95870636 100.1876829

0.002 92.45503286 99.89916516 100.3756209

0.003 88.76825685 99.82163294 100.563807

0.004 85.14280942 99.72638952 100.7522337

0.005 81.58179248 99.61373724 100.9408929

0.006 78.08825643 99.4840001 101.1297755

0.007 74.66518313 99.33752279 101.3188717

0.008 71.31546787 99.17466962 101.5081706

⁞ ⁞ ⁞ ⁞

1.489 8.648208124 12.25357802 14.99960432

1.49 8.761057434 12.24801042 15.02318419

1.491 8.875348481 12.24248318 15.04685473

1.492 8.991098972 12.23699646 15.07061565

1.493 9.108326815 12.23155042 15.09446667

1.494 9.227050124 12.22614522 15.1184075

1.495 9.347287215 12.22078106 15.14243787

1.496 9.469056614 12.21545811 15.16655749

1.497 9.592377053 12.21017658 15.19076611

1.498 9.717267476 12.20493667 15.21506346

1.499 9.843747041 12.1997386 15.23944928

1.5 9.971835119 12.19458258 15.26392331

Table 1. The result of the first iteration
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Table 1 shows the first iteration of the simulated 
data using equation (9). These data are used to 
approximate the analytic solution to the extended 
Lotka –Volterra differential equation model.

Table 2 shows summary statistics for the 
symbolic regression analysis. The Bottom species 
(producer) was more fluctuate than the Middle 
species (primary consumer) and the Top Species 
(predator).

Species MSE 𝑹𝑹𝟐𝟐 Equation 
𝑥𝑥(𝑡𝑡) 138.28192 0.9889 𝑥𝑥 =  0.922𝑡𝑡14 𝑠𝑠𝑠𝑠𝑠𝑠(0.014𝑡𝑡2) +  1.0𝑡𝑡2 𝑒𝑒𝑥𝑥𝑒𝑒(8.09𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠(0.92𝑡𝑡4))

𝑦𝑦(𝑡𝑡) 12.671713 0.9954 𝑦𝑦 =  6.33 +  11.1𝑡𝑡 +  11.1𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠(2.86 +  2.26𝑡𝑡 +  2.26𝑡𝑡2))  
+  39.6 𝑒𝑒𝑥𝑥𝑒𝑒(3.78 𝑠𝑠𝑠𝑠𝑠𝑠(2.86 +  2.26𝑡𝑡 +  2.26𝑡𝑡2))  
−  3.78 𝑠𝑠𝑠𝑠𝑠𝑠(2.86 +  2.26𝑡𝑡 +  2.26𝑡𝑡2)  
−  33.77𝑡𝑡 𝑒𝑒𝑥𝑥𝑒𝑒(3.78 𝑠𝑠𝑠𝑠𝑠𝑠(2.86 +  2.26𝑡𝑡 +  2.26𝑡𝑡2))

𝑧𝑧(𝑡𝑡) 65.35765 0.8906 𝑧𝑧 =  153 +  1416.86𝑡𝑡2  +  377.65𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠(3.18𝑡𝑡) −  1076𝑡𝑡 −  446.4𝑡𝑡3  
−  251.7𝑡𝑡2 𝑠𝑠𝑠𝑠𝑠𝑠(3.18𝑡𝑡) −  85.5𝑡𝑡2 𝑠𝑠𝑠𝑠𝑠𝑠(3.18𝑡𝑡)2

 

Table 2. Result Statistics for the Symbolic Regression Analysis 

Figure 1. Plot of x(t), y(t) and z(t)

Figure 1 shows the graph of the solutions 
x(t), y(t) and z(t). The best fitting of the symbolic 
regression curve of the x(t) gives an r – squared 
value of 98.89% with mean squared error (MSE) of 
138.28, y(t) gives an r – squared value of 99.54% 
with mean squared error (MSE) of 12.67 and for 
the z(t) gives an r – squared value of 89.06% with 
mean squared error (MSE) of 65.36 This implies that 
the approximate solution of the x(t), y(t) and z(t) 
is the best analytic solution to the extended Lotka 
– Volterra differential equations model.

Figure 2 shows the plot of x(t) vs y(t) vs z(t)
Note the closed trajectory as expected.

4.0 Conclusion and Recommendation
The symbolic regression analysis provides 

a proper means to determine an approximate 
analytic solution to the Three Species Lotka-Volterra 
non-linear differential equations. Therefore, the 
researcher recommends that the approximate 
analytic solution be made as close as the desired 
analytic solution of the three species Lotka-
Volterra differential equation model problem. 
Likewise, since the finite difference approach is one 
method for arriving at a numerical solution of the 
differential equation, faster convergence can be 
expected with more sophisticated Euler numerical 
methods.

Figure 2. Plot of x(t) vs. y(t) vs. z(t)
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