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Abstract

The paper examines an effi  cient alternative to the Box-Cox and Yeo-Johnson’s 
transformation to normality procedures which works under very general conditions. The 
method hinges on two fundamental results : the fact that the cumulative distribution 
function F(x) of a random variable X always has a U(0,1) distribution and the Box-Mueller 
transformation of uniform random variables to standard normal random variables. 
Given two observations x and y, we computed Fn(x) and Fn(y) , which for large n, are 
approximately uniform random variables. These values are then inputted into the Box-
Mueller transformations. Bounds for the Kolmogorov-Smirnov statistic between the 
distribution of the transformed observations and the normal distribution are provided 
through numerical simulation and by appealing to the Dvoretzky-Kiefer-Wolfowitz 
inequality. 
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1.0  Introduction
         Most parametric statistical tests of hypotheses 
in statistical inference rely on the assumption that 
the data on hand are normally distributed. In fact, 
for some of these statistical tests, departure from 
this assumption can lead to serious consequences 
in terms of either the power of the tests or the 
level of signifi cance of the tests while others can 
be quite robust to departures from the normality 
assumption (Huber, 1981). Since such statistical 
tests are often used , it is a good practice to 
transform the data to one which obeys the normal 
distribution prior to their use in data analysis. 

The most popular method used to transform 
data to normality is the Box-Cox transformation 
technique. Thus, if X is any non-negative random 
variable whose distribution is not normal, then the 
Box-Cox technique fi nds an exponent α such that:

(1)         
is normal. If α = 1, then no transformation is 
needed; if  α = -1, then an inverse transformation 
is required; if α  = ½, a square root transformation 
may be appropriate. By convention,  α = 0 will 
refer to a logarithmic data transformation. The 
usual range for the values of  α is between -2 to 2 
and the process is by trial and error. The trial and 
error procedure involved in using the family of 
Box-Cox transformations makes it unpopular in 
practice. A recent addition to the methodologies 
for transforming data distribution to normal is 
the Yeo- Johnson (2000) transformation  which 
generalizes the Box-Cox methodology for negative 
random variables but which also suff ers from the 
same analytic problems as the Box-Cox method:

(1)         
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 For some obvious distributions, for instance, 
when data are obtained from a uniform distribution 
on 0 to 1, the Johnson’s method is unable to fi nd 
an appropriate transformation to normality for the 
data even if some well-established procedures for 
transforming U(0,1) random variables to normally 
distributed random variables are available.

The search for better and more effi  cient 
methods for transforming non-normal data 
to normal ones continues to date. This paper 
proposes a more general approach to data 
transformation which does not require trial and 
error and which can be easily implemented with 
today’s faster and more effi  cient computing power. 
The proposed method is surprisingly simple and 
is based on the well-known inverse transform 
theorem in probability and the popular Box-
Mueller transformation to normality for uniform 
, U(0,1), random numbers. While there may be 
other reasons for transforming data , we restrict 
our concern to the objective of transforming 
observations so that they become normally 
distributed. Section 2 discusses the basic concepts 
needed to understand the implementation of the 
proposed procedure. 

2.0 Basic Concepts
The uniform distribution on [0,1] whose 

density is given by:
(2) 
is the basis for generating random numbers from 
other distributions. We now state and prove the 
inverse-transform theorem.

Theorem 1: Let X be a random variable with density 
f(x) and cumulative distribution function F(x), then  
F(x) is uniformly distributed on [0,1]. That is,

(3) 

Proof: 
Let x have the cdf F(x). Then,

which is the cdf of a uniform random variable. It 
follows that F(x) is uniformly distributed on [0,1]. ■

It follows that x = F-1(U). If we can generate a 
uniform random number U, then we can always 
generate a random number x from a distribution 
f(x) by simply following this inversion formula.

Theorem 2: (Box-Mueller Theorem) Suppose U1

and U2 are independent random variables that are 
uniformly distributed in the interval (0, 1]. Let

and

Then Z1 and Z2 are independent random variables 
with a normal distribution of mean zero standard 
deviation 1.
Proof
 Let . Then:

Let:

It follows that;

The Jacobian of this transformation is:
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Hence:

The last line states that  is the product of 
the densities of two standard normal variates

The Box-Mueller transformation is the 
transformation used in most computer-generated 
normal random variates. It is quite effi  cient in that 
it provides one normal variate for every uniform 
variate given. Other transformation approaches 
to generate normal random variates employ the 
Central Limit Theorem.

A combination of these two standard results  
provides a way of transforming non-normal 
observations into normally distributed random 
variables. Roughly, if X is distributed F(x), then 
we know that F(x) has a U(0,1) distribution. Let Y 
be independently drawn from F(.) so that F(y) will 
also have the uniform distribution on (0,1). Defi ne 
Z = g(F(X),F(Y))) be the Box-Mueller transformation 
provided above. Our ability to implement this 
algorithm depends to a large extent on the 
availability of a closed-form expression for the 
cumulative distribution function F(x):

(4)  

Even for well-known probability densities f(.), 
a closed-form expression for (4) may not be easily 
obtained e.g. normal densities, the family of beta 
densities and others. In order to circumvent this 
problem, we assume that we have a suffi  ciently 
large number of observations x1,x2,...,xn iid F(.), 
where F(.) is unknown. We estimate F(x) by the 
empirical distribution function Fn(x) given by:

(5)  

where I(. ) is the indicator function. In eff ect, the 
empirical distribution function puts a mass of 1/n 
to each of the observations less than or equal to 
xi. Each I(xi) is a Bernoulli random variable with p = 
F(x) so that by the Law of Large Numbers, we know 
that Fn(x) converges to F(x) in probability. A stronger 
result was established independently by Glivenko 
and Cantelli showing that the convergence to F(x) 
in fact is uniform. The Glivenko-Cantelli Theorem 
states that

(6) 

Bounds for the approximation have been 
established in the past, the latest being that of 
Massart (1990). The more popular bound, however, 
is the Dvoretsky-Kiefer-Wolfowitz bound .

The Dvoretzky–Kiefer–Wolfowitz inequality 
bounds the probability that the random function Fn

diff ers from F   by more than a given constant ε > 0 
anywhere on the real line. More precisely, there is 
the one-sided estimate

and the two-sided estimate

This strengthens the Glivenko–Cantelli 
theorem by quantifying the rate of convergence 
as n tends to infi nity. It also estimates the tail 
probability of the Kolmogorov–Smirnov statistic.

The D-K-W inequality provides a convenient 
way for determining the number of observations 
n needed to estimate F(x) to any desired degree of 
accuracy with probability 1- α:

B o r r e s  a n d  B a r a b a t
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(7) 

We	illustrate	the	sample	size	requirements	
for	 a	 95%	 confi	dence	 with	 various	 accuracy	
levels  in Table 1:

Table	1:	Sample	Size	Requirement

Epsilon alpha1 N
0.01 0.05 18444.4
0.02 0.05 4611.1
0.03 0.05 2049.4
0.04 0.05 1152.8
0.05 0.05 737.8
0.06 0.05 512.3
0.07 0.05 376.4
0.08 0.05 288.2
0.09 0.05 227.7
0.1 0.05 184.4

The sample size needed at a fi xed signifi cance 
level increases as the margin of error decreases. In 
fact, when it is desired to estimate the parent F(x) by 
Fn(x) with error .01, the sample size needed is more 
than 18,000. When the available data are small, say, 
n < 30, a bootstrap resampling procedure can be 
undertaken. Through bootstrapping, the number 
of samples can be increased to any desired number. 

3.0 The Proposed Procedure
We formalize the proposed procedure in this 

section. 

Main Theorem: Let x1, x2,...,xn be iid F(x). We assume 
that F(x) is absolutely continuous with respect 
to a Lebesgue measure Let Fn(x) be the empirical 
distribution function of the random sample. 
Assume n is large enough so that the maximum 
diff erence between the parent distribution and the 
empirical distribution function is small, say, ε. Let:

(8) 

where U1 = Fn(x1) and U2 = Fn(x2). Then 
g(.) and h(.) are approximately independent 
standard normal random variables.

Proof:
It suffi  ces to prove that g(.) is a standard normal 
random variable. If U1 = F(x1)  and      U2 = F(x2), then 
by the previous result of Box-Mueller, the result 
follows. We replace F by its empirical estimate Fn:

 = Fn(x1) and  = Fn(x2). 

We measure the diff erence between  g( ) and 
g(U1,U2).
Now,

The last convergence statement follows from the 
following result in analysis:

Result: If  uniformly for all x, then if 
t(.) is  continuous, 

 as n→∞.  

Proof: Since if  uniformly, then 
  such that:

Let t(.) be a continuous function, then 
 such that:

  whenever       
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Set  and , and the result follows

The result is used in the last statement 
of the proof of the theorem by considering 

 and  which are 
continuous on [0, 1].  It follows that g(U1, U2) is 
stochastically close to g( 1, 2). Since g(U1, U2) is 
a standard normal variate by the Box-Mueller, it 
follows that g( 1, 2) is approximately normal.■

We now establish the fact that the maximum 
deviation of the distribution of g( 1, 2) from the 
standard normal distribution φ(x) is bounded by 
the DKW upper bound. We accomplish this by 
noting that g(U1,U2) is identical to the standard 
normal distribution while g( 1, 2) is quite close to 
g(U1,U2) when the sample size is suffi  ciently large 
for the Glivenko-Cantelli theorem to hold i.e. for the 
uniform convergence of the empirical distribution 
function to the true distribution function. The 
norm used in the proof is the infi nity norm.

Theorem 3. The maximum deviation of the 
distribution of g( 1, 2) from the standard normal 
distribution φ(x) is bounded by the DKW upper 
bound, that is,

Proof:
Let Fn(g( 1, 2)) be the empirical distribution 
function of g( 1, 2). Then:

   
        

 as n →∞.

It follows that:
 

The larger the sample size n is , the better is the 
approximation of the sampling distribution of the 
statistic g(.) by a standard normal distribution.■

4.0 Simulation Results
We wish to compare the proposed procedure 

with the Yeo-Johnson transformation technique 
using numerical simulations. We simulated 500 
observations from the family of beta densities, 
Gamma densities and Laplace distribution. For 
each set of observations, we performed both 
the proposed procedure and the Yeo-Johnson 
transformation to transform them into normally 
distributed random numbers. The results of 
the transformations were compared using the 
Kolmogorov-Smirnov deviance statistics.

The following distributions were used as 
base distributions for generating the random 
observations:

Beta: B(1,2), B(1,3), B(2,1), B(2,2), B(2,3), B(3,1), 
B(3,2), B(3,3)

Gamma: G(1,2), G(1,3), G(2,1), G(2,2), G(2,3), G(3,1), 
G(3,2), G(3,3)

Laplace: L(1,2), L(1,3), L(2,1), L(2,2), L(2,3), L(3,1), 
L(3,2), L(3,3)

In order to implement the proposed procedure, 
we followed the algorithm below:

Algorithm:

1.  Input random data
2. Arrange random data from smallest to highest
3. Assign a weight of 1/n, 2/n, 3/n..., n-1/n, 1 to 
 the smallest , second lowest, third lowest up to 
 the highest data respectively.
4. Put the appropriate weights to the original set 
 of unsorted data

B o r r e s  a n d  B a r a b a t
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5.	 Apply Box-Mueller transformation to the 
	 weights in step 4.
6.	 Test the transformed data for normality by the 
	 Kolmogorov-Smirnov statistic

Whenever feasible, we apply the Yeo- Johnson 
transformation in step 4 to the original data set and 
compute the Kolmogorov-Smirnov statistic for the 
transformed data by this method. The Yeo-Johnson 
algorithm may or may not produce the desired 
transformation, a problem which it shares with the 
Box-Cox method.

5.0 Results and Discussions
Table 2 shows the summary of the simulation 

results.
The null hypothesis that the distribution of the 
transformed data is normal is accepted in all cases 

for the proposed method. The same observation 
holds true for the Yeo-Johnson algorithm whenever 
a transformation is available. We emphasize that 
the availability of a Yeo-Johnson transformation is 
dependent on the statistical software used.

Whenever a Yeo-Johnson transformation is 
available, the computed Kolmogorov statistic or 
maximum deviation statistic tended to be lower 
for it than the proposed method . However,  the 
differences observed for the Kolmogorov statistical 
distances between the proposed method and 
Yeo-Johnson method are very small indeed 
showing that the two methods provide equally 
reliable results. In this sense, the proposed method 
provides a sensible alternative to the existing data 
transformation algorithms.

The main advantage of the proposed method 
over the Yeo-Johnson algorithm (and the Box-Cox 

Distribution
Proposed Algorithm YEO-JOHNSON Algorithm

P-value Kolmogorov-Smirnov P-value Kolmogorov-Smirnov
Beta (1,3) > 0.15 0.021 > 0.15 No transformation
Beta (1,2) >0.15 0.027 >0.15 No transformation
Beta (2,3) > 0.15 0.016 > 0.15 No transformation
Beta (2,2) >0.15 0.013 >0.15 No transformation
Beta (2,1) > 0.15 0.030 > 0.15 No transformation
Beta (3,1) >0.15 0.020 >0.15 No transformation
Beta (3,2) > 0.15 0.017 > 0.15 0.019
Beta (3,3) >0.15 0.026 >0.15 0.024
Gamma (1,3)      >0.15 0.021 > 0.15 0.017
Gamma (1,2) >0.15 0.028 >0.15 0.016
Gamma (2,3) > 0.15 0.031 > 0.15 No transformation
Gamma (2,2) >0.15 0.021 >0.15 No transformation
Gamma (2,1) > 0.15 0.022 > 0.15 No transformation
Gamma (3,1) >0.15 0.020 >0.15 No transformation
Gamma (3,2) > 0.15 0.024 > 0.15 No transformation
Gamma (3,3) >0.15 0.028 >0.15 No transformation
Laplace(1,3) > 0.15 0.029 > 0.15 0.020
Laplace (1,2) >0.15 0.032 >0.15 0.029
Laplace (2,3) > 0.15 0.026 > 0.15 0.025
Laplace (2,2) >0.15 0.032 >0.15 0.031
Laplace (2,1) > 0.15 0.026 > 0.15 0.025
Laplace (3,1) >0.15 0.019 >0.15 0.015
Laplace (3,2) > 0.15 0.023 > 0.15 0.031
Laplace (3,3) >0.15 0.029 >0.15 0.033

Table 2: Comparison of the Yeo-Johhnson Algorithm and the Proposed Algorithm
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method) is that transformations to normality are 
always possible for the proposed method while 
the same may not be available for the Yeo-Johnson 
algorithm. The disadvantage, however, is the fact 
that the proposed method requires a large number 
of observations (n > 100) for it to work efficiently. 
To remedy this limitation, we suggest the use of 
a bootstrap re-sampling procedure to increase 
the sample size.  The proposed method can easily 
be coded and incorporated in statistical software 
packages.

6.0 Conclusions and Recommendations
We have introduced a new method for 

transforming any set of random observations to 
normality via the empirical distribution function 
Fn(x) and the Box-Mueller transformation. The 
theoretical and statistical properties of the 
proposed method were discussed. In particular, we 
showed that the a bound for the probability of a 
Kolmogorov-Smirnov type statistic is identical to 
the Dvoretzky-Kiefer-Wolfowitz two-sided bound. 
The proposed method  compares very well with 
the Yeo-Johnson technique (a generalization of 
the popular Box-Cox transformation technique) 
and has the added advantage of being able to 
transform any set of data to normality which is not 
always the case for the Yeo-Johnson algorithm. 
Moreover, the proposed method can be easily 
incorporated in available statistical softwares.
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